IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v238y2025ics0960148124019980.html
   My bibliography  Save this article

An energy saving potential evaluation method of a pipe-embedded wall integrated with natural energies

Author

Listed:
  • Fan, Shiguang
  • Yan, Tian
  • Che, Lunfei
  • Liu, Jun
  • Li, Xianting
  • Lyu, Weihua
  • Xu, Xinhua

Abstract

Pipe-embedded wall (PEWall) can be integrated with various natural energies to significantly reduce building load and energy consumption. However, a general method for quickly assessing the energy-saving potential of such different systems is currently lacking. To address this gap, a novel evaluation method based on revised degree hour is presented. This method focuses on the determination of main parameters essential for accurate assessment. The proposed method is validated by comparing its results with that of a reference model, demonstrating good accuracy. Case study is conducted to evaluate the energy saving potentials of the PEWall with the ground source heat exchanger (GSHE), the cooling tower (CT) and the solar energy collector (SEC) in Wuhan, a hot summer and cold winter climate region. The evaluation results show that, the energy savings of the PEWall-GSHE system for cooling and heating can reach 6.51 kWh/m2 and 2.79 kWh/m2 respectively, demonstrating good energy saving potential. For the PEWall-SEC system, the energy saving for heating is 3.98 kWh/m2 which is acceptable. For the PEWall-CT system, a limited energy saving for cooling of 1.22 kWh/m2 is presented. In conclusion, this evaluation method can effectively assess the energy-saving potentials of the PEWall with different natural energies.

Suggested Citation

  • Fan, Shiguang & Yan, Tian & Che, Lunfei & Liu, Jun & Li, Xianting & Lyu, Weihua & Xu, Xinhua, 2025. "An energy saving potential evaluation method of a pipe-embedded wall integrated with natural energies," Renewable Energy, Elsevier, vol. 238(C).
  • Handle: RePEc:eee:renene:v:238:y:2025:i:c:s0960148124019980
    DOI: 10.1016/j.renene.2024.121930
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124019980
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121930?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ibrahim, Mohamad & Wurtz, Etienne & Biwole, Pascal Henry & Achard, Patrick, 2014. "Transferring the south solar energy to the north facade through embedded water pipes," Energy, Elsevier, vol. 78(C), pages 834-845.
    2. Antonopoulos, K.A. & Tzivanidis, C., 1997. "Numerical solution of unsteady three-dimensional heat transfer during space cooling using ceiling-embedded piping," Energy, Elsevier, vol. 22(1), pages 59-67.
    3. Zhang, Yelin & Tso, Chi Yan & Tse, Chung Fai Norman & Fong, Alan Ming-Lun & Lin, Kaixin & Sun, Yongjun, 2024. "A novel radiative sky cooler system with enhanced daytime cooling performance to reduce building roof heat gains in subtropical climate," Renewable Energy, Elsevier, vol. 220(C).
    4. Chong Shen & Xianting Li, 2017. "Potential of Utilizing Different Natural Cooling Sources to Reduce the Building Cooling Load and Cooling Energy Consumption: A Case Study in Urumqi," Energies, MDPI, vol. 10(3), pages 1-17, March.
    5. Yan, Tian & Sun, Zhongwei & Gao, Jiajia & Xu, Xinhua & Yu, Jinghua & Gang, Wenjie, 2020. "Simulation study of a pipe-encapsulated PCM wall system with self-activated heat removal by nocturnal sky radiation," Renewable Energy, Elsevier, vol. 146(C), pages 1451-1464.
    6. Dahash, Abdulrahman & Ochs, Fabian & Janetti, Michele Bianchi & Streicher, Wolfgang, 2019. "Advances in seasonal thermal energy storage for solar district heating applications: A critical review on large-scale hot-water tank and pit thermal energy storage systems," Applied Energy, Elsevier, vol. 239(C), pages 296-315.
    7. Yan, Tian & Zhou, Xuan & Xu, Xinhua & Yu, Jinghua & Li, Xianting, 2022. "Parametric analysis on performances of the pipe-encapsulated PCM (PenPCM) wall system coupled with gravity heat-pipe and nocturnal radiant cooler," Renewable Energy, Elsevier, vol. 196(C), pages 161-180.
    8. Yan, Tian & Xu, Xinhua & Gao, Jiajia & Luo, Yongqiang & Yu, Jinghua, 2020. "Performance evaluation of a PCM-embedded wall integrated with a nocturnal sky radiator," Energy, Elsevier, vol. 210(C).
    9. Yang, Yang & Chen, Sarula & Zhang, Jiqiang, 2023. "A comprehensive study on transient thermal behaviors and performances of the modular pipe-embedded energy wall system under intermittent operation conditions," Energy, Elsevier, vol. 280(C).
    10. Kayaci, Nurullah, 2020. "Energy and exergy analysis and thermo-economic optimization of the ground source heat pump integrated with radiant wall panel and fan-coil unit with floor heating or radiator," Renewable Energy, Elsevier, vol. 160(C), pages 333-349.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhaoxin & Li, Jiaxuan & Tang, Guoqiang & Zhang, Jiahao & Zhang, Donghai & Gao, Penghui, 2024. "High-efficiency heating and cooling technology with embedded pipes in buildings and underground structures: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    2. Yang, Yang & Chen, Sarula & Li, Shuying & Xiao, Xiuyi & Chen, Tianhang, 2024. "Comprehensive analysis of thermal performance and low-grade energy charging efficiency of pipe-embedded building envelopes enhanced with single-level tree-shaped fin structures," Renewable Energy, Elsevier, vol. 237(PB).
    3. Yang, Yang & Chen, Sarula & Huang, Yuxin & Li, Xianyue & Ge, Yue, 2025. "Employing modular phase change filler structures to enhance comprehensive performance of pipe-embedded energy walls under intermittent injection mode," Energy, Elsevier, vol. 322(C).
    4. Yang, Yang & Chen, Sarula, 2022. "Thermal insulation solutions for opaque envelope of low-energy buildings: A systematic review of methods and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Sihvonen, Ville & Ollila, Iisa & Jaanto, Jasmin & Grönman, Aki & Honkapuro, Samuli & Riikonen, Juhani & Price, Alisdair, 2024. "Role of power-to-heat and thermal energy storage in decarbonization of district heating," Energy, Elsevier, vol. 305(C).
    6. Clarke, Fiona & Dorneanu, Bogdan & Mechleri, Evgenia & Arellano-Garcia, Harvey, 2021. "Optimal design of heating and cooling pipeline networks for residential distributed energy resource systems," Energy, Elsevier, vol. 235(C).
    7. Yan, Peiliang & Fan, Weijun & Han, Yu & Ding, Hongbing & Wen, Chuang & Elbarghthi, Anas F.A. & Yang, Yan, 2023. "Leaf-vein bionic fin configurations for enhanced thermal energy storage performance of phase change materials in smart heating and cooling systems," Applied Energy, Elsevier, vol. 346(C).
    8. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    9. Luca Brunelli & Emiliano Borri & Anna Laura Pisello & Andrea Nicolini & Carles Mateu & Luisa F. Cabeza, 2024. "Thermal Energy Storage in Energy Communities: A Perspective Overview through a Bibliometric Analysis," Sustainability, MDPI, vol. 16(14), pages 1-27, July.
    10. Chen, Yuxin & Sun, Yongjun & Yang, Jinling & Tan, Jiaqi & Liu, Yang & Gao, Dian-ce, 2024. "Demand response with PCM-based pipe-embedded wall in commercial buildings: Combined passive and active energy storage in envelopes," Energy, Elsevier, vol. 308(C).
    11. Zhang, Shi-guang & Zhang, Hao & Xi, Xin-ming & Li, Bao-rang, 2025. "A review of design considerations and performance enhancement techniques for thermocline thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    12. Zhao, Yaxin & Wang, Huan & Li, Xianting, 2025. "Field test on the thermal performance of double-layer pipe-embedded wall heating system with shallow geothermal energy and air source heat pump," Applied Energy, Elsevier, vol. 377(PD).
    13. Agnieszka Operacz & Agnieszka Zachora-Buławska & Izabela Strzelecka & Mariusz Buda & Bogusław Bielec & Karolina Migdał & Tomasz Operacz, 2022. "The Standard Geothermal Plant as an Innovative Combined Renewable Energy Resources System: The Case from South Poland," Energies, MDPI, vol. 15(17), pages 1-23, September.
    14. Romaní, Joaquim & Cabeza, Luisa F. & de Gracia, Alvaro, 2018. "Development and experimental validation of a transient 2D numeric model for radiant walls," Renewable Energy, Elsevier, vol. 115(C), pages 859-870.
    15. Wang, Wenjie & Cao, Jingyu & Tang, Shaodi & Peng, Jinqing & Chen, Yixing & Hu, Mingke & Wang, Qiliang & Pei, Gang & Ji, Jie, 2025. "Preliminary characterization of three-source air conditioning integrating radiative sky cooling and direct evaporative cooling," Energy, Elsevier, vol. 316(C).
    16. Angeliki Kitsopoulou & Antonis Zacharis & Nikolaos Ziozas & Evangelos Bellos & Petros Iliadis & Ioannis Lampropoulos & Eleni Chatzigeorgiou & Komninos Angelakoglou & Nikolaos Nikolopoulos, 2023. "Dynamic Energy Analysis of Different Heat Pump Heating Systems Exploiting Renewable Energy Sources," Sustainability, MDPI, vol. 15(14), pages 1-36, July.
    17. Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).
    18. Hu, Zhiru & Li, Tianshuang & Zhang, Yuxin & Tao, Yao & Tu, Jiyuan & Yang, Qizhi & Wang, Yong & Yang, Lizhong & Romagnoli, Alessandro, 2024. "Experimental investigation on the performance of a borehole thermal energy storage system based on similarity and symmetry," Energy, Elsevier, vol. 313(C).
    19. Wang, Xueli & Zhang, Pengju & Du, Yan & Liu, Lang & Fang, Jiabin & Ji, Changfa & Wang, Mei & Zhang, Bo & Huan, Chao, 2024. "Numerical investigation on the heat storage/heat release performance enhancement of phase change cemented paste backfill body with using casing-type heat pipe heat exchangers," Renewable Energy, Elsevier, vol. 225(C).
    20. Huang, Xinyu & Li, Fangfei & Liu, Zhengguang & Gao, Xinyu & Yang, Xiaohu & Yan, Jinyue, 2023. "Design and optimization of a novel phase change photovoltaic thermal utilization structure for building envelope," Renewable Energy, Elsevier, vol. 218(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:238:y:2025:i:c:s0960148124019980. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.