IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipas0960148124016446.html
   My bibliography  Save this article

Coordinating and valuing the flexibility resources in a rural integrated energy system by considering correlated source-load uncertainty

Author

Listed:
  • Li, Shuxu
  • Li, Zhiyi

Abstract

This paper proposes a two-stage model for flexible resource coordination and value analysis in rural areas, which considers the specific biomass energy conversion supply and the correlated uncertainties on both sides of the integrated energy system. Firstly, it describes the impacts of correlated uncertainty on the actual output of the source and load based on factor analysis and affine variables, and constructs an affine optimization model for cooperative scheduling of system-wide flexible resources. Secondly, according to the energy supply envelope area of flexible resources within the scheduling cycle, it proposes the value measurement indices of system flexibility adjustment ability and economic benefit to evaluate the sensitivity of flexible resources. Finally, the simulation results show that the proposed method can effectively reduce the conservatism of the scheduling scheme, and analyzing the influence of capacities and time-of-use tariff on flexibility value provides a reference for the construction of integrated energy systems in rural areas.

Suggested Citation

  • Li, Shuxu & Li, Zhiyi, 2024. "Coordinating and valuing the flexibility resources in a rural integrated energy system by considering correlated source-load uncertainty," Renewable Energy, Elsevier, vol. 237(PA).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124016446
    DOI: 10.1016/j.renene.2024.121576
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124016446
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121576?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Tan, Mao & Li, Zibin & Su, Yongxin & Ren, Yuling & Wang, Ling & Wang, Rui, 2024. "Dual time-scale robust optimization for energy management of distributed energy community considering source-load uncertainty," Renewable Energy, Elsevier, vol. 226(C).
    2. Chen, Yuxin & Jiang, Yuewen, 2023. "Interval energy flow calculation method for electricity-heat-hydrogen integrated energy system considering the correlation between variables," Energy, Elsevier, vol. 263(PB).
    3. Zhao, Anjun & Jiao, Yang & Quan, Wei & Chen, Yiren, 2024. "Net zero carbon rural integrated energy system design optimization based on the energy demand in temporal and spatial dimensions," Renewable Energy, Elsevier, vol. 222(C).
    4. Ma, Yixiang & Yu, Lean & Zhang, Guoxing & Lu, Zhiming & Wu, Jiaqian, 2023. "Source-load uncertainty-based multi-objective multi-energy complementary optimal scheduling," Renewable Energy, Elsevier, vol. 219(P1).
    5. Ju, Liwei & Lu, Xiaolong & Yang, Shenbo & Li, Gen & Fan, Wei & Pan, Yushu & Qiao, Huiting, 2022. "A multi-time scale dispatching optimal model for rural biomass waste energy conversion system-based micro-energy grid considering multi-energy demand response," Applied Energy, Elsevier, vol. 327(C).
    6. Wang, Yuwei & Song, Minghao & Jia, Mengyao & Li, Bingkang & Fei, Haoran & Zhang, Yiyue & Wang, Xuejie, 2023. "Multi-objective distributionally robust optimization for hydrogen-involved total renewable energy CCHP planning under source-load uncertainties," Applied Energy, Elsevier, vol. 342(C).
    7. Tang, Hong & Wang, Shengwei, 2022. "Multi-level optimal dispatch strategy and profit-sharing mechanism for unlocking energy flexibilities of non-residential building clusters in electricity markets of multiple flexibility services," Renewable Energy, Elsevier, vol. 201(P1), pages 35-45.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Yi & Ding, Tao & Chang, Xinyue & Jia, Wenhao & Xue, Yixun, 2024. "A distributed multi-objective optimization method for scheduling of integrated electricity and hydrogen systems," Applied Energy, Elsevier, vol. 355(C).
    2. Kong, Feng & Zhang, Dongyue & Song, Minghao & Zhou, Xuecong & Wang, Yuwei, 2024. "Collaborative scheduling and benefit allocation for waste-to-energy, hydrogen storage, and power-to-gas under uncertainties with temporal relevance," Energy, Elsevier, vol. 307(C).
    3. Qi, Xin & Ju, Liwei & Yang, Shenbo & Gan, Wei & Li, Gen & Bai, Xiping, 2025. "A bi-level peer-to-peer interactive trading optimization model and distributed solution algorithm for rural distributed energy system group based on Stackelberg-Nash game strategy," Energy, Elsevier, vol. 318(C).
    4. Jinping Li & Xiaotong Han, 2025. "Comprehensive Evaluation of Cogeneration Biogas Multiple Supply System for Rural Communities in Northwest China," Energies, MDPI, vol. 18(12), pages 1-27, June.
    5. Chen, Yuzhu & Guo, Weimin & Lund, Peter D. & Du, Na & Yang, Kun & wang, Jun, 2024. "Configuration optimization of a wind-solar based net-zero emission tri-generation energy system considering renewable power and carbon trading mechanisms," Renewable Energy, Elsevier, vol. 232(C).
    6. Zhu, Zhenle & Qu, Zhiguo & Gong, Jianqiang & Li, Jianjun & Xu, Hongtao, 2025. "Robust optimal model for rural integrated energy system incorporating biomass waste utilization and power-to-gas coupling unit considering deep learning-based air conditioning load personalized demand," Energy, Elsevier, vol. 321(C).
    7. Lu, M.L. & Sun, Y.J. & Kokogiannakis, G. & Ma, Z.J., 2024. "Design of flexible energy systems for nearly/net zero energy buildings under uncertainty characteristics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
    8. Ju, Liwei & Lv, ShuoShuo & Li, Yanbin & Li, Yun & Qi, Xin & Li, Gen & Zhang, Feng, 2025. "Two-stage scheduling optimization model and benefit allocation strategy for virtual power plant clusters aggregated by multidimensional information indicators," Renewable Energy, Elsevier, vol. 240(C).
    9. Petrucci, Andrea & Ayevide, Follivi Kloutse & Buonomano, Annamaria & Athienitis, Andreas, 2023. "Development of energy aggregators for virtual communities: The energy efficiency-flexibility nexus for demand response," Renewable Energy, Elsevier, vol. 215(C).
    10. Deng, Lirong & Fu, Yang & Guo, Qinglai & Li, Zhenkun & Xue, Yixun & Zhang, Zhiquan, 2024. "Energy and reserve procurement in integrated electricity and heating system: A high-dimensional covariance matrix approach based on stochastic differential equations," Energy, Elsevier, vol. 304(C).
    11. Jimiao Zhang & Jie Li, 2024. "Revolution in Renewables: Integration of Green Hydrogen for a Sustainable Future," Energies, MDPI, vol. 17(16), pages 1-26, August.
    12. Guiqing Feng & Kun Yu & Yuntian Zheng & Le Bu & Jinfan Chen & Wenli Xu & Xingying Chen, 2025. "Optimization of Energy Use for Zero-Carbon Buildings Considering Intraday Source-Load Uncertainties," Energies, MDPI, vol. 18(10), pages 1-18, May.
    13. Lu, Xinyu & Chang, Huawei & Tu, Zhengkai & Xie, Changjun, 2025. "Performance evaluation of a novel off-grid CCHP system based on a semi-closed-loop PEMEC-PEMFC," Energy, Elsevier, vol. 321(C).
    14. Zhao, Xiangming & Liu, Yuan & He, Maogang & Guo, Jianxiang, 2025. "Comprehensive optimization of combined cooling, heating, and power hybrid renewable multienergy system based on enhanced implementation feasibility," Renewable Energy, Elsevier, vol. 245(C).
    15. Volpato, Gabriele & Carraro, Gianluca & De Giovanni, Luigi & Dal Cin, Enrico & Danieli, Piero & Bregolin, Edoardo & Lazzaretto, Andrea, 2024. "A stochastic optimization procedure to design the fair aggregation of energy users in a Renewable Energy Community," Renewable Energy, Elsevier, vol. 237(PA).
    16. Gao, Xiang & Lin, Hua & Jing, Dengwei & Zhang, Xiongwen, 2025. "A novel framework for optimal design of solar-powered integrated energy system considering long timescale characteristics," Energy, Elsevier, vol. 325(C).
    17. Vallati, Andrea & Lo Basso, Gianluigi & Muzi, Francesco & Fiorini, Costanza Vittoria & Pastore, Lorenzo Mario & Di Matteo, Miriam, 2024. "Urban energy transition: Sustainable model simulation for social house district," Energy, Elsevier, vol. 308(C).
    18. Yuyang Zhao & Yifan Wei & Shuaiqi Zhang & Yingjun Guo & Hexu Sun, 2024. "Multi-Objective Robust Optimization of Integrated Energy System with Hydrogen Energy Storage," Energies, MDPI, vol. 17(5), pages 1-20, February.
    19. Zhang, Hui & Wang, Jiye & Zhao, Xiongwen & Yang, Jingqi & Bu sinnah, Zainab Ali, 2023. "Modeling a hydrogen-based sustainable multi-carrier energy system using a multi-objective optimization considering embedded joint chance constraints," Energy, Elsevier, vol. 278(C).
    20. Peng, Hongyi & Yan, Mingyu & Zhou, Yijia, 2024. "Privacy-preserving non-iterative decentralized optimal energy flow for integrated hydrogen-electricity-heat system based on projection method," Applied Energy, Elsevier, vol. 368(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124016446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.