IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v236y2024ics0960148124015702.html
   My bibliography  Save this article

Short-Term Hydro-Wind-PV peak shaving scheduling using approximate hydropower output characters

Author

Listed:
  • Wu, Xinyu
  • Zhang, Jiaao
  • Wei, Xingchen
  • Cheng, Chuntian
  • Cheng, Ruixiang

Abstract

With the massive construction of wind and photovoltaic (PV) power plants, the uncertainty of their output poses challenges for grid peak regulation. Hydropower, characterized by convenient regulation, fast response speed, and low cost, is an ideal choice for compensating for wind and PV energy generation. Mixed-Integer Linear Programming (MILP) is employed to work out short-term scheduling of hydro-wind-PV power. However, considering hydropower scheduling alone is already highly complex, and incorporating the deviations in wind and PV energy further reduces the solution efficiency. In practical scheduling, operators often rely on empirical scheduling methods that can yield satisfactory results. To enhance solution quality and improve the scalability and efficiency of the MILP method, a short-term optimization scheduling model for hydropower plants has been proposed and applied to the Hongshui River cascade system. The case study shows that the model can perform calculations in just 2 s, demonstrating extremely high computational efficiency. This can significantly enhance decision-making in cascaded hydropower scheduling. At the same time, the model leaves sufficient reserve capacity to address the uncertainty of wind and solar power output while reducing the residual load by 0.8 %, which is beneficial for the stable operation of the grid.

Suggested Citation

  • Wu, Xinyu & Zhang, Jiaao & Wei, Xingchen & Cheng, Chuntian & Cheng, Ruixiang, 2024. "Short-Term Hydro-Wind-PV peak shaving scheduling using approximate hydropower output characters," Renewable Energy, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124015702
    DOI: 10.1016/j.renene.2024.121502
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124015702
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121502?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian, 2018. "Optimization of hydropower reservoirs operation balancing generation benefit and ecological requirement with parallel multi-objective genetic algorithm," Energy, Elsevier, vol. 153(C), pages 706-718.
    2. Han, Shuo & He, Mengjiao & Zhao, Ziwen & Chen, Diyi & Xu, Beibei & Jurasz, Jakub & Liu, Fusheng & Zheng, Hongxi, 2023. "Overcoming the uncertainty and volatility of wind power: Day-ahead scheduling of hydro-wind hybrid power generation system by coordinating power regulation and frequency response flexibility," Applied Energy, Elsevier, vol. 333(C).
    3. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian & Wu, Xin-yu, 2017. "Optimization of hydropower system operation by uniform dynamic programming for dimensionality reduction," Energy, Elsevier, vol. 134(C), pages 718-730.
    4. Ding, Ning & Duan, Jinhui & Xue, Song & Zeng, Ming & Shen, Jianfei, 2015. "Overall review of peaking power in China: Status quo, barriers and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 503-516.
    5. Li, Fang-Fang & Qiu, Jun, 2016. "Multi-objective optimization for integrated hydro–photovoltaic power system," Applied Energy, Elsevier, vol. 167(C), pages 377-384.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Bin & Zhu, Feilin & Zhong, Ping-an & Chen, Juan & Liu, Weifeng & Ma, Yufei & Guo, Le & Deng, Xiaoliang, 2019. "Identifying long-term effects of using hydropower to complement wind power uncertainty through stochastic programming," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Ming, Bo & Liu, Pan & Guo, Shenglian & Cheng, Lei & Zhou, Yanlai & Gao, Shida & Li, He, 2018. "Robust hydroelectric unit commitment considering integration of large-scale photovoltaic power: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1341-1352.
    3. Nasir, Jehanzeb & Javed, Adeel & Ali, Majid & Ullah, Kafait & Kazmi, Syed Ali Abbas, 2022. "Capacity optimization of pumped storage hydropower and its impact on an integrated conventional hydropower plant operation," Applied Energy, Elsevier, vol. 323(C).
    4. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian, 2018. "Optimal allocation of hydropower and hybrid electricity injected from inter-regional transmission lines among multiple receiving-end power grids in China," Energy, Elsevier, vol. 162(C), pages 444-452.
    5. Zhongkai Feng & Wenjing Niu & Sen Wang & Chuntian Cheng & Zhenguo Song, 2019. "Mixed Integer Linear Programming Model for Peak Operation of Gas-Fired Generating Units with Disjoint-Prohibited Operating Zones," Energies, MDPI, vol. 12(11), pages 1-17, June.
    6. Feng, Zhong-kai & Niu, Wen-jing & Wang, Wen-chuan & Zhou, Jian-zhong & Cheng, Chun-tian, 2019. "A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy," Energy, Elsevier, vol. 175(C), pages 618-629.
    7. Shuai Liu & Zhong-Kai Feng & Wen-Jing Niu & Hai-Rong Zhang & Zhen-Guo Song, 2019. "Peak Operation Problem Solving for Hydropower Reservoirs by Elite-Guide Sine Cosine Algorithm with Gaussian Local Search and Random Mutation," Energies, MDPI, vol. 12(11), pages 1-24, June.
    8. Wang, Jinwen & Chen, Cheng & Liu, Shuangquan, 2018. "A new field-levelling procedure to minimize spillages in hydropower reservoir operation," Energy, Elsevier, vol. 160(C), pages 979-985.
    9. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian, 2019. "China’s large-scale hydropower system: operation characteristics, modeling challenge and dimensionality reduction possibilities," Renewable Energy, Elsevier, vol. 136(C), pages 805-818.
    10. Wang, Jin & Zhao, Zhipeng & Zhou, Jinglin & Cheng, Chuntian & Su, Huaying, 2024. "Co-optimization for day-ahead scheduling and flexibility response mode of a hydro–wind–solar hybrid system considering forecast uncertainty of variable renewable energy," Energy, Elsevier, vol. 311(C).
    11. Zhang, Huaiyuan & Liao, Kai & Yang, Jianwei & Zheng, Shunwei & He, Zhengyou, 2024. "Frequency-constrained expansion planning for wind and photovoltaic power in wind-photovoltaic-hydro-thermal multi-power system," Applied Energy, Elsevier, vol. 356(C).
    12. Hu Hu & Kan Yang & Lyuwen Su & Zhe Yang, 2019. "A Novel Adaptive Multi-Objective Particle Swarm Optimization Based on Decomposition and Dominance for Long-term Generation Scheduling of Cascade Hydropower System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 4007-4026, September.
    13. Mahmoudimehr, Javad & Shabani, Masoume, 2018. "Optimal design of hybrid photovoltaic-hydroelectric standalone energy system for north and south of Iran," Renewable Energy, Elsevier, vol. 115(C), pages 238-251.
    14. Lisicki, Michal & Lubitz, William & Taylor, Graham W., 2016. "Optimal design and operation of Archimedes screw turbines using Bayesian optimization," Applied Energy, Elsevier, vol. 183(C), pages 1404-1417.
    15. Su, Chengguo & Cheng, Chuntian & Wang, Peilin & Shen, Jianjian & Wu, Xinyu, 2019. "Optimization model for long-distance integrated transmission of wind farms and pumped-storage hydropower plants," Applied Energy, Elsevier, vol. 242(C), pages 285-293.
    16. Shuo Huang & Xinyu Wu & Yiyang Wu & Zheng Zhang, 2023. "Mid-Term Optimal Scheduling of Low-Head Cascaded Hydropower Stations Considering Inflow Unevenness," Energies, MDPI, vol. 16(17), pages 1-13, September.
    17. Iasonas Kouveliotis-Lysikatos & Angelica Waernlund & Manuel Marin & Mikael Amelin & Lennart Söder, 2021. "Open Source Modelling and Simulation of the Nordic Hydro Power System," Energies, MDPI, vol. 14(5), pages 1-17, March.
    18. Li, Huanhuan & Chen, Diyi & Arzaghi, Ehsan & Abbassi, Rouzbeh & Xu, Beibei & Patelli, Edoardo & Tolo, Silvia, 2018. "Safety assessment of hydro-generating units using experiments and grey-entropy correlation analysis," Energy, Elsevier, vol. 165(PA), pages 222-234.
    19. Ming, Bo & Liu, Pan & Guo, Shenglian & Zhang, Xiaoqi & Feng, Maoyuan & Wang, Xianxun, 2017. "Optimizing utility-scale photovoltaic power generation for integration into a hydropower reservoir by incorporating long- and short-term operational decisions," Applied Energy, Elsevier, vol. 204(C), pages 432-445.
    20. Zhang, Hongxuan & Lu, Zongxiang & Hu, Wei & Wang, Yiting & Dong, Ling & Zhang, Jietan, 2019. "Coordinated optimal operation of hydro–wind–solar integrated systems," Applied Energy, Elsevier, vol. 242(C), pages 883-896.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124015702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.