IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v227y2024ics0960148124006736.html
   My bibliography  Save this article

Modelling of fly ash viscous deposition and slagging prediction of biomass-fired boiler

Author

Listed:
  • Zhu, Yiming
  • Su, Haining
  • Qiu, Tongyu
  • Zhai, Yingmei
  • Mikulčić, Hrvoje
  • Wang, Xuebin
  • Zhang, Lan
  • Xie, Jun
  • Yang, Tianhua

Abstract

In addressing the ash melting-induced slagging on the high-temperature heating surfaces of biomass-fired boiler, a combined experimental and modelling study of biomass ash viscous deposition has been conducted. A comprehensive ash viscous deposition model based on ash fusion and viscosity characteristics and the critical velocity criterion has been proposed. The deposits of the top furnace and high-temperature superheater of a 130 t/h biomass-fired boiler have been sampled for validation, and a modelling study using ANSYS FLUENT with a user defined function (UDF) and dynamic mesh has been performed. The results show that small particles with diameter of 20 μm lead to less viscous adhesion because of faster response to temperature decrease before reaching the heating surfaces. Deposition efficiency and growth rate of deposits are positively correlated with temperature. Slagging in the top furnace area is dominated by the viscous deposition of molten ash. However, the amount of viscous deposition accounts for a low proportion (20.1 %) in the high-temperature superheater, suggesting a change of dominant slagging mechanism from viscous deposition to gaseous condensation and the subsequent capture of fly ash. The model is suitable for predicting ash melting-induced slagging in high-temperature areas of biomass boilers.

Suggested Citation

  • Zhu, Yiming & Su, Haining & Qiu, Tongyu & Zhai, Yingmei & Mikulčić, Hrvoje & Wang, Xuebin & Zhang, Lan & Xie, Jun & Yang, Tianhua, 2024. "Modelling of fly ash viscous deposition and slagging prediction of biomass-fired boiler," Renewable Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124006736
    DOI: 10.1016/j.renene.2024.120605
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124006736
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120605?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124006736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.