IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v225y2024ics0960148124004099.html
   My bibliography  Save this article

Array analysis on a seawall type of deformable wave energy converters

Author

Listed:
  • Wei, Yujia
  • Wang, Chao
  • Chen, Wenchuang
  • Huang, Luofeng

Abstract

There has been a significant interest in developing Flexible Wave Energy Converters (FlexWECs) that utilise structural deformations to generate electricity and mitigate destructive wave loads to the devices. In the meantime, FlexWECs are most likely to operate in an array format to enhance space usage and power output, as well as provide convenience for maintenance. In this context, the present paper develops a high-fidelity computational model to investigate the interaction of ocean surface waves with an array of seawall-type FlexWECs, which can meanwhile serve coastal engineering purposes. The fluid field is solved using the Navier-Stokes equations, and structural deformations are predicted using a nonlinear finite-element method. Hydroelastic interactions of up to seven deforming FlexWECs with the surrounding wave fields are demonstrated through systematic simulation cases. Based on the simulation results, analyses are conducted to investigate how the wave farm energy output is influenced by the gap between individual devices and the number of devices deployed. Accordingly, empirical design suggestions are provided. Overall, this work innovatively simulates the hydroelastic interactions between waves and multiple deforming structures, and the provided insights are useful for promoting the development of FlexWECs and their wave farms.

Suggested Citation

  • Wei, Yujia & Wang, Chao & Chen, Wenchuang & Huang, Luofeng, 2024. "Array analysis on a seawall type of deformable wave energy converters," Renewable Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124004099
    DOI: 10.1016/j.renene.2024.120344
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124004099
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120344?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124004099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.