IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v219y2023ip2s0960148123014246.html
   My bibliography  Save this article

The energy, emissions, and drying kinetics of three-stage solar, microwave and desiccant absorption drying of potato slices

Author

Listed:
  • Usama, Muhammad
  • Ali, Zaib
  • Ndukwu, Macmanus C.
  • Sathyamurthy, Ravishankar

Abstract

In this study, a three-stage solar dryer using solar convection, convection-microwave, and solar desiccant absorption-assisted convection drying was developed and evaluated. This process was designed to reduce energy consumption and Carbon emissions while retaining the color properties of the dried food product. Potato slices were dried in the first stage using solar convection and the process was assisted by Microwave radiation in the second stage to increase the drying rate. The final stage combined solar desiccant absorption with solar convection to maintain the drying rate at a lower temperature, thereby reducing energy use and minimizing thermal damage to the biomass. Compared to Microwave-Convection drying, the three-stage drying process was found to consume 46 % lower specific energy and reduced Carbon emissions by 53 %. The Vitamin – C retention and color retention were found to improve by 27 % and 8.55 % respectively. The proposed design is promising and can be used to improve the overall performance of solar thermal drying methods in terms of temperature control, energy efficiency, sustainability, and product quality. It also has the potential to be deployed in rural areas with minimal dependence on grid energy.

Suggested Citation

  • Usama, Muhammad & Ali, Zaib & Ndukwu, Macmanus C. & Sathyamurthy, Ravishankar, 2023. "The energy, emissions, and drying kinetics of three-stage solar, microwave and desiccant absorption drying of potato slices," Renewable Energy, Elsevier, vol. 219(P2).
  • Handle: RePEc:eee:renene:v:219:y:2023:i:p2:s0960148123014246
    DOI: 10.1016/j.renene.2023.119509
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123014246
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119509?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:219:y:2023:i:p2:s0960148123014246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.