IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v219y2023ip1s0960148123013605.html
   My bibliography  Save this article

Graphite-assisted microwave carbon dioxide gasification of wet stalks

Author

Listed:
  • Lian, Ming-lei
  • Li, Shuai
  • Wu, Wen-fang
  • Li, Lin
  • Miao, Ying-ju
  • Ge, Yuan

Abstract

In order to realize the low-carbon gasification of the typical wet stalks, the graphite was used as the microwave-absorbing agent and the heat transfer medium in the microwave field, and CO2 was used as the gasification agent to explore the characteristics of microwave CO2 gasification. After mixing the corn stalks, the rice stalks or the wheat stalks with different water contents and the graphite in a mass ratio of 4:1, CO2 was introduced for gasification in a microwave field. Experiments showed that with the increase in the water content, the carbon conversions, the gas yields and the volume fractions of the effective components all increased slowly in the front and rear sections, and increased rapidly in the middle section. When the CO2 flow rate was 0.6 Nm3·kg−1·min−1, the carbon conversions, the gas yields and the volume fractions of the effective components all reached their peaks. It was found that the structure of the three stalks changed from smooth to porous during the intermediate process of the graphite-assisted microwave gasification. The deashed stalks with water content of 60 % was gasified in a microwave field of 700 W for 1.25 min, and the BET specific surface areas of the generated porous carbon reached 2041–2054 m2 g−1, and the volume fractions of the effective components of the gasification gas were more than 95 %. With the prolongation of the gasification time, the carbon conversions increased slowly in the early and late stages, but increased rapidly in the middle stage. The reason was that the large amount of porous carbon generated in the middle stage was the gasifiable strong microwave-absorbing agent, which greatly increased the gasification temperature and accelerated the reaction rates. When the graphite was reused 10 times, the carbon conversions could still reach more than 80 %. The XRD tests were carried out on the graphite used many times to explore its deactivation mechanism. This paper has practical significance for the low-carbon CO2 recycling of stalks biomass, and provides a new way for the preparation of biomass-based porous carbon.

Suggested Citation

  • Lian, Ming-lei & Li, Shuai & Wu, Wen-fang & Li, Lin & Miao, Ying-ju & Ge, Yuan, 2023. "Graphite-assisted microwave carbon dioxide gasification of wet stalks," Renewable Energy, Elsevier, vol. 219(P1).
  • Handle: RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123013605
    DOI: 10.1016/j.renene.2023.119445
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123013605
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119445?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123013605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.