IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v208y2023icp52-62.html
   My bibliography  Save this article

Concomitant strategy of wastewater treatment and biodiesel production using innate yeast cell (Rhodotorula mucilaginosa) from food industry sewerage and its energy system analysis

Author

Listed:
  • Sundaramahalingam, M.A.
  • Sivashanmugam, P.

Abstract

In many recent studies, the wastewater with high organic matter and high utilization value compounds was treated using yeast. It decreases the effluent contaminants and makes it applicable for reuse in many food industries. This present study focuses on the combined approach of treatment and biorefinery to increase the circular economy in food industries. The two primary goals of the work were to screen the potential oleaginous yeast from the food industry effluent (FIE) collected from the food flavourant producing industry and used for FIE remediation through bioaugmentation and to extract microbial oil of yeast biomass harvested after remediation. Further, the extracted microbial oil was trans-esterified to produce biodiesel. The process of transesterification was optimized for its influencing parameters. After 10 days of treatment of FIE with the yeast cell, the treatment efficiency was analyzed and found to be precise with the typical discharge value. The overall lipid content of the oleaginous yeast (Rhodotorula mucilaginosa SML) used for the FIE treatment was 67.95 w/w% of dry cell biomass. The extracted microbial oil was used for transesterification; the process was optimized through the one-variable analysis approach and response surface methodology optimization using a central composite design. The transesterification process showed maximum conversion (98%) at oil to methanol ratio - 5.0, catalyst concentration - 2.8% and time - 1.15 h. The fatty acid composition and the physicochemical characteristics were compatible with petroleum diesel, making it applicable for alternative biofuel production. Thus, this concomitant strategy has proved efficient for reducing contaminants in FIE and suggested a new sustainable source for biodiesel production. The exergy, energy and mass balance analysis of the biodiesel conversion process proved that this process is the most economically viable one to increase the circular economy of food industries.

Suggested Citation

  • Sundaramahalingam, M.A. & Sivashanmugam, P., 2023. "Concomitant strategy of wastewater treatment and biodiesel production using innate yeast cell (Rhodotorula mucilaginosa) from food industry sewerage and its energy system analysis," Renewable Energy, Elsevier, vol. 208(C), pages 52-62.
  • Handle: RePEc:eee:renene:v:208:y:2023:i:c:p:52-62
    DOI: 10.1016/j.renene.2023.03.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123003658
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.03.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karim, Ahasanul & Islam, M. Amirul & Khalid, Zaied Bin & Yousuf, Abu & Khan, Md. Maksudur Rahman & Mohammad Faizal, Che Ku, 2021. "Microbial lipid accumulation through bioremediation of palm oil mill effluent using a yeast-bacteria co-culture," Renewable Energy, Elsevier, vol. 176(C), pages 106-114.
    2. Marcin Dębowski & Marcin Zieliński & Marta Kisielewska & Joanna Kazimierowicz, 2020. "Evaluation of Anaerobic Digestion of Dairy Wastewater in an Innovative Multi-Section Horizontal Flow Reactor," Energies, MDPI, vol. 13(9), pages 1-16, May.
    3. Antonopoulou, Io & Spanopoulos, Athanasios & Matsakas, Leonidas, 2020. "Single cell oil and ethanol production by the oleaginous yeast Trichosporon fermentans utilizing dried sweet sorghum stalks," Renewable Energy, Elsevier, vol. 146(C), pages 1609-1617.
    4. Louhasakul, Yasmi & Cheirsilp, Benjamas & Maneerat, Suppasil & Prasertsan, Poonsuk, 2019. "Potential use of flocculating oleaginous yeasts for bioconversion of industrial wastes into biodiesel feedstocks," Renewable Energy, Elsevier, vol. 136(C), pages 1311-1319.
    5. Peter, Angela Paul & Koyande, Apurav Krishna & Chew, Kit Wayne & Ho, Shih-Hsin & Chen, Wei-Hsin & Chang, Jo-Shu & Krishnamoorthy, Rambabu & Banat, Fawzi & Show, Pau Loke, 2022. "Continuous cultivation of microalgae in photobioreactors as a source of renewable energy: Current status and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    6. Chen, Lu & Zhang, Yu & Liu, Guang-Lei & Chi, Zhe & Hu, Zhong & Chi, Zhen-Ming, 2020. "Cellular lipid production by the fatty acid synthase-duplicated Lipomyces kononenkoae BF1S57 strain for biodiesel making," Renewable Energy, Elsevier, vol. 151(C), pages 707-714.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caporusso, Antonio & De Bari, Isabella & Liuzzi, Federico & Albergo, Roberto & Valerio, Vito & Viola, Egidio & Pietrafesa, Rocchina & Siesto, Gabriella & Capece, Angela, 2023. "Optimized conversion of wheat straw into single cell oils by Yarrowia lipolytica and Lipomyces tetrasporus and synthesis of advanced biofuels," Renewable Energy, Elsevier, vol. 202(C), pages 184-195.
    2. Lim, Yi An & Ilankoon, I.M.S.K. & Chong, Meng Nan & Foo, Su Chern, 2023. "Improving microalgae growth and carbon capture through micro-size bubbles generation in flat-panel photobioreactors: Impacts of different gas sparger designs on mixing performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    3. Leesing, Ratanaporn & Siwina, Siraprapha & Ngernyen, Yuvarat & Fiala, Khanittha, 2022. "Innovative approach for co-production of single cell oil (SCO), novel carbon-based solid acid catalyst and SCO-based biodiesel from fallen Dipterocarpus alatus leaves," Renewable Energy, Elsevier, vol. 185(C), pages 47-60.
    4. Joanna Kazimierowicz & Marcin Dębowski & Marcin Zieliński, 2022. "Microbial Granule Technology—Prospects for Wastewater Treatment and Energy Production," Energies, MDPI, vol. 16(1), pages 1-26, December.
    5. Shokravi, Zahra & Shokravi, Hoofar & Atabani, A.E. & Lau, Woei Jye & Chyuan, Ong Hwai & Ismail, Ahmad Fauzi, 2022. "Impacts of the harvesting process on microalgae fatty acid profiles and lipid yields: Implications for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Joanna Kazimierowicz & Marcin Zieliński & Izabela Bartkowska & Marcin Dębowski, 2022. "Effect of Acid Whey Pretreatment Using Ultrasonic Disintegration on the Removal of Organic Compounds and Anaerobic Digestion Efficiency," IJERPH, MDPI, vol. 19(18), pages 1-20, September.
    7. Beata Karolinczak & Wojciech Dąbrowski & Radosław Żyłka, 2021. "Evaluation of Dairy Wastewater Treatment Systems Using Carbon Footprint Analysis," Energies, MDPI, vol. 14(17), pages 1-10, August.
    8. Marcin Zieliński & Joanna Kazimierowicz & Marcin Dębowski, 2022. "Advantages and Limitations of Anaerobic Wastewater Treatment—Technological Basics, Development Directions, and Technological Innovations," Energies, MDPI, vol. 16(1), pages 1-39, December.
    9. Karim, Ahasanul & Islam, M. Amirul & Khalid, Zaied Bin & Yousuf, Abu & Khan, Md. Maksudur Rahman & Mohammad Faizal, Che Ku, 2021. "Microbial lipid accumulation through bioremediation of palm oil mill effluent using a yeast-bacteria co-culture," Renewable Energy, Elsevier, vol. 176(C), pages 106-114.
    10. Sotiris I. Patsios & Anna Dedousi & Evangelia Ν. Sossidou & Antonios Zdragas, 2020. "Sustainable Animal Feed Protein through the Cultivation of YARROWIA Lipolytica on Agro-Industrial Wastes and by-Products," Sustainability, MDPI, vol. 12(4), pages 1-23, February.
    11. Małgorzata Worwąg & Iwona Zawieja, 2022. "Influence of Ultrasonic Field Parameters on the Biochemical Activity of Leachates from the Composting Process," Sustainability, MDPI, vol. 14(9), pages 1-13, May.
    12. Zarifeh Raji & Ahasanul Karim & Antoine Karam & Seddik Khalloufi, 2023. "Adsorption of Heavy Metals: Mechanisms, Kinetics, and Applications of Various Adsorbents in Wastewater Remediation—A Review," Waste, MDPI, vol. 1(3), pages 1-31, September.
    13. Song, Sha-Sha & Tian, Bai-Chuan & Chen, Hao & Chi, Zhe & Liu, Guang-Lei & Chi, Zhen-Ming, 2022. "Transformation of corncob-derived xylose into intracellular lipid by engineered strain of Aureobasidium melanogenum P10 for biodiesel production," Renewable Energy, Elsevier, vol. 200(C), pages 1211-1222.
    14. Marcin Zieliński & Marcin Dębowski & Joanna Kazimierowicz & Izabela Świca, 2023. "Microalgal Carbon Dioxide (CO 2 ) Capture and Utilization from the European Union Perspective," Energies, MDPI, vol. 16(3), pages 1-27, February.
    15. Prakash Kumar Sarangi & Akhilesh Kumar Singh & Rajesh Kumar Srivastava & Vijai Kumar Gupta, 2023. "Recent Progress and Future Perspectives for Zero Agriculture Waste Technologies: Pineapple Waste as a Case Study," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    16. Zhang, Linye & Xin, Zongwu & Liu, Zihan & Wei, Guangtao & Li, Zhongmin & Ou, Yuning, 2020. "Mechanistic study of the catalytic transfer hydrogenation of biodiesel catalyzed by Raney-Ni under microwave heating," Renewable Energy, Elsevier, vol. 147(P1), pages 695-704.
    17. Joanna Kazimierowicz & Marcin Dębowski, 2022. "Aerobic Granular Sludge as a Substrate in Anaerobic Digestion—Current Status and Perspectives," Sustainability, MDPI, vol. 14(17), pages 1-24, August.
    18. Monteiro, Rodolpho R.C. & Arana-Peña, Sara & da Rocha, Thays N. & Miranda, Letícia P. & Berenguer-Murcia, Ángel & Tardioli, Paulo W. & dos Santos, José C.S. & Fernandez-Lafuente, Roberto, 2021. "Liquid lipase preparations designed for industrial production of biodiesel. Is it really an optimal solution?," Renewable Energy, Elsevier, vol. 164(C), pages 1566-1587.
    19. Joanna Kazimierowicz & Izabela Bartkowska & Maria Walery, 2020. "Effect of Low-Temperature Conditioning of Excess Dairy Sewage Sludge with the Use of Solidified Carbon Dioxide on the Efficiency of Methane Fermentation," Energies, MDPI, vol. 14(1), pages 1-13, December.
    20. Farias, Josiane Pinheiro & Okeke, Benedict C. & Ávila, Fernanda Dias De & Demarco, Carolina Faccio & Silva, Márcio Santos & Camargo, Flávio Anastácio de Oliveira & Menezes Bento, Fátima & Pieniz, Simo, 2023. "Biotechnology process for microbial lipid synthesis from enzymatic hydrolysate of pre-treated sugarcane bagasse for potential bio-oil production," Renewable Energy, Elsevier, vol. 205(C), pages 174-184.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:208:y:2023:i:c:p:52-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.