IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v200y2022icp516-526.html
   My bibliography  Save this article

Experimental study of different thermal storage system effects on the performance of a small prototype solar chimney power plant

Author

Listed:
  • Ikhlef, Khaoula
  • Larbi, Salah
  • Üçgül, İbrahim

Abstract

The present work is dedicated to an experimental study of a small SCPP prototype with a thermal storage system. The experimental prototype was designed, built, and set up in the laboratory of YEKARUM of Süleyman Demirel University, SDU, in Isparta, Turkey. It consists of a chimney tower of 4.2 m in height and 0.24 m in diameter and an air collector of 5.93 m in diameter with 1 m in outlet collector height. Different thermal storage systems (TES) were tested to demonstrate their effects on the performance of the prototype of the SCPP. Isparta site is suitable for installing SCPP according to its sunny property where the solar irradiation reaches 1123 W/m2. The collector's efficiency depends strongly on the thermal storage system. It is demonstrated that adding the diffuser to the experimental device increases the SCPP performance by reducing turbulence in the collector. Moreover, the crushed gravel basement is presented as the best thermal storage system, with a collector efficiency reaching 89.73%. Experimental and theoretical data have shown a good agreement. Good consistency was found between the experimental results of this study and those from the literature.

Suggested Citation

  • Ikhlef, Khaoula & Larbi, Salah & Üçgül, İbrahim, 2022. "Experimental study of different thermal storage system effects on the performance of a small prototype solar chimney power plant," Renewable Energy, Elsevier, vol. 200(C), pages 516-526.
  • Handle: RePEc:eee:renene:v:200:y:2022:i:c:p:516-526
    DOI: 10.1016/j.renene.2022.09.087
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812201446X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.09.087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghalamchi, Mehran & Kasaeian, Alibakhsh & Ghalamchi, Mehrdad, 2015. "Experimental study of geometrical and climate effects on the performance of a small solar chimney," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 425-431.
    2. Lorenc Malka & Alfred Daci & Alban Kuriqi & Pietro Bartocci & Ermonela Rrapaj, 2022. "Energy Storage Benefits Assessment Using Multiple-Choice Criteria: The Case of Drini River Cascade, Albania," Energies, MDPI, vol. 15(11), pages 1-22, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fallah, Seyyed Hossein & Valipour, Mohammad Sadegh, 2022. "Numerical investigation of a small scale sloped solar chimney power plant," Renewable Energy, Elsevier, vol. 183(C), pages 1-11.
    2. Maia, Cristiana Brasil & Ferreira, André Guimarães & Cabezas-Gómez, Luben & de Oliveira Castro Silva, Janaína & de Morais Hanriot, Sérgio, 2017. "Thermodynamic analysis of the drying process of bananas in a small-scale solar updraft tower in Brazil," Renewable Energy, Elsevier, vol. 114(PB), pages 1005-1012.
    3. Ming, Tingzhen & Wu, Yongjia & de_Richter, Renaud K. & Liu, Wei & Sherif, S.A., 2017. "Solar updraft power plant system: A brief review and a case study on a new system with radial partition walls in its collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 472-487.
    4. Haji Bashi, Mazaher & De Tommasi, Luciano & Le Cam, Andreea & Relaño, Lorena Sánchez & Lyons, Padraig & Mundó, Joana & Pandelieva-Dimova, Ivanka & Schapp, Henrik & Loth-Babut, Karolina & Egger, Christ, 2023. "A review and mapping exercise of energy community regulatory challenges in European member states based on a survey of collective energy actors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    5. Ghalamchi, Mehrdad & Kasaeian, Alibakhsh & Ghalamchi, Mehran & Mirzahosseini, Alireza Hajiseyed, 2016. "An experimental study on the thermal performance of a solar chimney with different dimensional parameters," Renewable Energy, Elsevier, vol. 91(C), pages 477-483.
    6. Ferdinando Salata & Chiara Alippi & Anna Tarsitano & Iacopo Golasi & Massimo Coppi, 2015. "A First Approach to Natural Thermoventilation of Residential Buildings through Ventilation Chimneys Supplied by Solar Ponds," Sustainability, MDPI, vol. 7(7), pages 1-15, July.
    7. Arkadiusz Orzechowski & Małgorzata Bombol, 2022. "Energy Security, Sustainable Development and the Green Bond Market," Energies, MDPI, vol. 15(17), pages 1-17, August.
    8. Maia, Cristiana Brasil & Castro Silva, Janaína de Oliveira, 2022. "Thermodynamic assessment of a small-scale solar chimney," Renewable Energy, Elsevier, vol. 186(C), pages 35-50.
    9. Chong Shao & Bolin Zhang & Bo Wei & Wenfei Liu & Yong Yang & Zhaoyuan Wu, 2023. "A Health-Aware Energy Storage Sharing Mechanism for a Renewable Energy Base," Energies, MDPI, vol. 16(14), pages 1-22, July.
    10. de Jesus, Ábio Xavier Cardoso & Pinheiro Neto, Daywes & Domingues, Elder Geraldo, 2023. "Computational tool for technical-economic analysis of photovoltaic microgeneration in Brazil," Energy, Elsevier, vol. 271(C).
    11. Mehdipour, Ramin & Baniamerian, Zahra & Golzardi, Sajad & Murshed, S.M. Sohel, 2020. "Geometry modification of solar collector to improve performance of solar chimneys," Renewable Energy, Elsevier, vol. 162(C), pages 160-170.
    12. Kasaeian, A.B. & Molana, Sh. & Rahmani, K. & Wen, D., 2017. "A review on solar chimney systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 954-987.
    13. Fadaei, Niloufar & Kasaeian, Alibakhsh & Akbarzadeh, Aliakbar & Hashemabadi, Seyed Hassan, 2018. "Experimental investigation of solar chimney with phase change material (PCM)," Renewable Energy, Elsevier, vol. 123(C), pages 26-35.
    14. Li, Ximei & Gao, Jianmin & Chen, Bingyuan & You, Shi & Zheng, Yi & Du, Qian & Qin, Yukun, 2023. "Multi-objective optimization of district heating systems with turbine-driving fans and pumps considering economic, exergic, and environmental aspects," Energy, Elsevier, vol. 277(C).
    15. Vieira, R.S. & Petry, A.P. & Rocha, L.A.O. & Isoldi, L.A. & dos Santos, E.D., 2017. "Numerical evaluation of a solar chimney geometry for different ground temperatures by means of constructal design," Renewable Energy, Elsevier, vol. 109(C), pages 222-234.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:200:y:2022:i:c:p:516-526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.