IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v191y2022icp345-356.html

Eco-friendly solar distillation apparatus for improving the yield of essential oils with enhancing organoleptic characteristics

Author

Listed:
  • Nannaware, Ashween Deepak
  • Sai Kumar, Ch Mohan
  • Srivastava, Shubham
  • Singh, Suman
  • Gupta, Manglesh Kumar
  • Rout, Prasanta Kumar
  • Chanotiya, C.S.
  • Lal, R.K.
  • Nimdeo, Yogesh
  • Roy, Saumendu

Abstract

Solar-operated distillation unit (SDU) was designed and fabricated for extraction of valuable essentials from aromatic crops with a reduced cost of operation without carbon-credits to the environment. It comprised of distillation still, mesh grid frame, packed column, condenser, oil receiver, energy meter, resistive heating elements, and solar panels. This improved SDU can process 20 kg of aromatic crops in a batch type of operation. Resistive heating elements (4.5 kW) with controllers powered by the solar photovoltaic panel (5 kW) were used to produce the uniform steam generation within 20 min. This produced steam was adequate for continuous distillation (∼3 h) of aromatic crops to collect valuable essentials in an oil receiver. The total power consumed by the SDU in carrying out the distillation operation was calculated (13.5 kWh). The extraction studies of Ocimum cultivars (CIM-Shishir, 100 and 102) through SDU and Clevenger-type apparatus (standard set) revealed that the SDU process was yielded improved essential oil (0.36–0.73%). GC-FID and GC/MS analyses divulged that the essential oil obtained through SDU was superior in quality with improved percentage of biomarkers such as linalool (upto 62.8%) and methyl chavicol. Designed SDU has saved about 20 kg of wood per batch as compared to practiced wood-based distillation operation.

Suggested Citation

  • Nannaware, Ashween Deepak & Sai Kumar, Ch Mohan & Srivastava, Shubham & Singh, Suman & Gupta, Manglesh Kumar & Rout, Prasanta Kumar & Chanotiya, C.S. & Lal, R.K. & Nimdeo, Yogesh & Roy, Saumendu, 2022. "Eco-friendly solar distillation apparatus for improving the yield of essential oils with enhancing organoleptic characteristics," Renewable Energy, Elsevier, vol. 191(C), pages 345-356.
  • Handle: RePEc:eee:renene:v:191:y:2022:i:c:p:345-356
    DOI: 10.1016/j.renene.2022.03.147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122004372
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.03.147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Khare, Vikas & Nema, Savita & Baredar, Prashant, 2013. "Status of solar wind renewable energy in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 1-10.
    2. Afzal, Arslan & Munir, Anjum & Ghafoor, Abdul & Alvarado, Jorge L., 2017. "Development of hybrid solar distillation system for essential oil extraction," Renewable Energy, Elsevier, vol. 113(C), pages 22-29.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dey, Subhashish & Sreenivasulu, Anduri & Veerendra, G.T.N. & Rao, K. Venkateswara & Babu, P.S.S. Anjaneya, 2022. "Renewable energy present status and future potentials in India: An overview," Innovation and Green Development, Elsevier, vol. 1(1).
    2. Shekhar, Jai & Suri, Dhruv & Somani, Priyanshi & Lee, Stephen J. & Arora, Mahika, 2021. "Reduced renewable energy stability in India following COVID-19: Insights and key policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Mohanty, Sthitapragyan & Patra, Prashanta K. & Sahoo, Sudhansu S. & Mohanty, Asit, 2017. "Forecasting of solar energy with application for a growing economy like India: Survey and implication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 539-553.
    4. Poompavai, T. & Kowsalya, M., 2019. "Control and energy management strategies applied for solar photovoltaic and wind energy fed water pumping system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 108-122.
    5. Marco Rogna, 2019. "A First-Phase Screening Device for Site Selection of Large-Scale Solar Plants with an Application to Italy," BEMPS - Bozen Economics & Management Paper Series BEMPS57, Faculty of Economics and Management at the Free University of Bozen.
    6. Mazhar H. Baloch & Safdar A. Abro & Ghulam Sarwar Kaloi & Nayyar H. Mirjat & Sohaib Tahir & M. Haroon Nadeem & Mehr Gul & Zubair A. Memon & Mahendar Kumar, 2017. "A Research on Electricity Generation from Wind Corridors of Pakistan (Two Provinces): A Technical Proposal for Remote Zones," Sustainability, MDPI, vol. 9(9), pages 1-31, September.
    7. Yadav, Amit Kumar & Malik, Hasmat & Chandel, S.S., 2015. "Application of rapid miner in ANN based prediction of solar radiation for assessment of solar energy resource potential of 76 sites in Northwestern India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1093-1106.
    8. Sivakumar, S. & Sathik, M. Jagabar & Manoj, P.S. & Sundararajan, G., 2016. "An assessment on performance of DC–DC converters for renewable energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1475-1485.
    9. Andreopoulou, Zacharoula & Koliouska, Christiana & Galariotis, Emilios & Zopounidis, Constantin, 2018. "Renewable energy sources: Using PROMETHEE II for ranking websites to support market opportunities," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 31-37.
    10. Stevens, Kelly A. & Iman, Sara & Davis, Kristopher O., 2022. "The cost of utility discretion on residential solar requirements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    11. Punia Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2016. "Recognition and prioritization of challenges in growth of solar energy using analytical hierarchy process: Indian outlook," Energy, Elsevier, vol. 100(C), pages 332-348.
    12. Duc Luong, Nguyen, 2015. "A critical review on potential and current status of wind energy in Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 440-448.
    13. Ermolenko, Boris V. & Ermolenko, Georgy V. & Fetisova, Yulia A. & Proskuryakova, Liliana N., 2017. "Wind and solar PV technical potentials: Measurement methodology and assessments for Russia," Energy, Elsevier, vol. 137(C), pages 1001-1012.
    14. Manju, S. & Sagar, Netramani, 2017. "Renewable energy integrated desalination: A sustainable solution to overcome future fresh-water scarcity in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 594-609.
    15. Khare, Vikas & Nema, Savita & Baredar, Prashant, 2016. "Solar–wind hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 23-33.
    16. Lari Shanlang Tiewsoh & Jakub Jirásek & Martin Sivek, 2019. "Electricity Generation in India: Present State, Future Outlook and Policy Implications," Energies, MDPI, vol. 12(7), pages 1-14, April.
    17. Sahoo, Sarat Kumar, 2016. "Renewable and sustainable energy reviews solar photovoltaic energy progress in India: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 927-939.
    18. Lyden, S. & Haque, M.E., 2015. "Maximum Power Point Tracking techniques for photovoltaic systems: A comprehensive review and comparative analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1504-1518.
    19. Singh, Rhythm, 2018. "Energy sufficiency aspirations of India and the role of renewable resources: Scenarios for future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2783-2795.
    20. Srilakshmi, Gopalakrishnan & Venkatesh, V. & Thirumalai, N.C. & Suresh, N.S., 2015. "Challenges and opportunities for Solar Tower technology in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 698-709.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:191:y:2022:i:c:p:345-356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.