IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v189y2022icp510-523.html
   My bibliography  Save this article

Optimization of a porous wind barrier to reduce soiling and avoid shading losses of photovoltaic panels

Author

Listed:
  • Raillani, Benyounes
  • Salhi, Mourad
  • Chaatouf, Dounia
  • Amraqui, Samir
  • Mezrhab, Ahmed

Abstract

This paper investigates numerically the use of a porous rock barrier for the mitigation of the Pv panel. The dust deposition behavior and its influences on the deposition rate for different particle sizes and conditions are analyzed. The CFD method was chosen to predict the dust deposition rates on the PV panel. In doing so, the discrete particle model was applied, while for the turbulent airflow, the k-ω shear stress transport turbulence model with two function profiles defined as UDF at the inlet were employed. We focused on the particle behavior and disposition rate as a function of barrier porosity and distance from the panel. The results indicate that the porosity, as well as the distance between the PV and the barrier, have a significant effect on the particle fluxes. The amount of particles deposited in the panel can be reduced by a rate of 86% for large particles, however, for small particles the reduction in the dust disposition rate is small compared to large ones, reaching 33%. The use of a porous barrier not only helped in terms of particle arrangement but also in terms of vortexes, which disappeared and consequently reduced the particles in suspension upstream of the PV panel. In this regard, we found that 50% is the optimal value.

Suggested Citation

  • Raillani, Benyounes & Salhi, Mourad & Chaatouf, Dounia & Amraqui, Samir & Mezrhab, Ahmed, 2022. "Optimization of a porous wind barrier to reduce soiling and avoid shading losses of photovoltaic panels," Renewable Energy, Elsevier, vol. 189(C), pages 510-523.
  • Handle: RePEc:eee:renene:v:189:y:2022:i:c:p:510-523
    DOI: 10.1016/j.renene.2022.03.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122002968
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.03.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chanchangi, Yusuf N. & Ghosh, Aritra & Sundaram, Senthilarasu & Mallick, Tapas K., 2020. "Dust and PV Performance in Nigeria: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    2. Hachicha, Ahmed Amine & Al-Sawafta, Israa & Said, Zafar, 2019. "Impact of dust on the performance of solar photovoltaic (PV) systems under United Arab Emirates weather conditions," Renewable Energy, Elsevier, vol. 141(C), pages 287-297.
    3. Lu, Hao & Zhang, Li-Zhi, 2019. "Influences of dust deposition on ground-mounted solar photovoltaic arrays: A CFD simulation study," Renewable Energy, Elsevier, vol. 135(C), pages 21-31.
    4. Salari, Ali & Hakkaki-Fard, Ali, 2019. "A numerical study of dust deposition effects on photovoltaic modules and photovoltaic-thermal systems," Renewable Energy, Elsevier, vol. 135(C), pages 437-449.
    5. Deb, Dipankar & Brahmbhatt, Nisarg L., 2018. "Review of yield increase of solar panels through soiling prevention, and a proposed water-free automated cleaning solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3306-3313.
    6. Jamil, Wan Juzaili & Abdul Rahman, Hasimah & Shaari, Sulaiman & Salam, Zainal, 2017. "Performance degradation of photovoltaic power system: Review on mitigation methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 876-891.
    7. Ullah, Asad & Amin, Amir & Haider, Turab & Saleem, Murtaza & Butt, Nauman Zafar, 2020. "Investigation of soiling effects, dust chemistry and optimum cleaning schedule for PV modules in Lahore, Pakistan," Renewable Energy, Elsevier, vol. 150(C), pages 456-468.
    8. Verma, L.K. & Sakhuja, M. & Son, J. & Danner, A.J. & Yang, H. & Zeng, H.C. & Bhatia, C.S., 2011. "Self-cleaning and antireflective packaging glass for solar modules," Renewable Energy, Elsevier, vol. 36(9), pages 2489-2493.
    9. Lu, Hao & Zhao, Wenjun, 2019. "CFD prediction of dust pollution and impact on an isolated ground-mounted solar photovoltaic system," Renewable Energy, Elsevier, vol. 131(C), pages 829-840.
    10. Bouaouadja, N. & Bouzid, S. & Hamidouche, M. & Bousbaa, C. & Madjoubi, M., 2000. "Effects of sandblasting on the efficiencies of solar panels," Applied Energy, Elsevier, vol. 65(1-4), pages 99-105, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raillani, Benyounes & Salhi, Mourad & Chaatouf, Dounia & Bria, Abir & Amraqui, Samir & Mezrhab, Ahmed, 2023. "A new proposed method to mitigate the soiling rate of a photovoltaic array using first-row height," Applied Energy, Elsevier, vol. 331(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Song, Zhe & Liu, Jia & Yang, Hongxing, 2021. "Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review," Applied Energy, Elsevier, vol. 298(C).
    3. Zhao, Weiping & Lv, Yukun & Zhou, Qingwen & Yan, Weiping, 2021. "Investigation on particle deposition criterion and dust accumulation impact on solar PV module performance," Energy, Elsevier, vol. 233(C).
    4. Chanchangi, Yusuf N. & Ghosh, Aritra & Baig, Hasan & Sundaram, Senthilarasu & Mallick, Tapas K., 2021. "Soiling on PV performance influenced by weather parameters in Northern Nigeria," Renewable Energy, Elsevier, vol. 180(C), pages 874-892.
    5. Aritra Ghosh, 2020. "Soiling Losses: A Barrier for India’s Energy Security Dependency from Photovoltaic Power," Challenges, MDPI, vol. 11(1), pages 1-22, May.
    6. Wu, Yubo & Du, Jianqiang & Liu, Guangxin & Ma, Danzhu & Jia, Fengrui & Klemeš, Jiří Jaromír & Wang, Jin, 2022. "A review of self-cleaning technology to reduce dust and ice accumulation in photovoltaic power generation using superhydrophobic coating," Renewable Energy, Elsevier, vol. 185(C), pages 1034-1061.
    7. Umar, Shayan & Waqas, Adeel & Tanveer, Waqas & Shahzad, Nadia & Janjua, Abdul Kashif & Dehghan, Maziar & Qureshi, Muhammad Salik & Shakir, Sehar, 2023. "A building integrated solar PV surface-cleaning setup to optimize the electricity output of PV modules in a polluted atmosphere," Renewable Energy, Elsevier, vol. 216(C).
    8. Raillani, Benyounes & Salhi, Mourad & Chaatouf, Dounia & Bria, Abir & Amraqui, Samir & Mezrhab, Ahmed, 2023. "A new proposed method to mitigate the soiling rate of a photovoltaic array using first-row height," Applied Energy, Elsevier, vol. 331(C).
    9. Zhao, Ning & Yan, Suying & Zhang, Na & Zhao, Xiaoyan, 2022. "Impacts of seasonal dust accumulation on a point-focused Fresnel high-concentration photovoltaic/thermal system," Renewable Energy, Elsevier, vol. 191(C), pages 732-746.
    10. Gulfam, Raza & Zhang, Peng, 2019. "Power generation and longevity improvement of renewable energy systems via slippery surfaces – A review," Renewable Energy, Elsevier, vol. 143(C), pages 922-938.
    11. Yao, Wanxiang & Kong, Xiangru & Xu, Ai & Xu, Puyan & Wang, Yan & Gao, Weijun, 2023. "New models for the influence of rainwater on the performance of photovoltaic modules under different rainfall conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    12. Karim Menoufi, 2017. "Dust Accumulation on the Surface of Photovoltaic Panels: Introducing the Photovoltaic Soiling Index (PVSI)," Sustainability, MDPI, vol. 9(6), pages 1-12, June.
    13. Chanchangi, Yusuf N. & Ghosh, Aritra & Sundaram, Senthilarasu & Mallick, Tapas K., 2020. "Dust and PV Performance in Nigeria: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    14. Gowtham Vedulla & Anbazhagan Geetha & Ramalingam Senthil, 2022. "Review of Strategies to Mitigate Dust Deposition on Solar Photovoltaic Systems," Energies, MDPI, vol. 16(1), pages 1-28, December.
    15. Dhaouadi, Rached & Al-Othman, Amani & Aidan, Ahmed A. & Tawalbeh, Muhammad & Zannerni, Rawan, 2021. "A characterization study for the properties of dust particles collected on photovoltaic (PV) panels in Sharjah, United Arab Emirates," Renewable Energy, Elsevier, vol. 171(C), pages 133-140.
    16. Dida, Mustapha & Boughali, Slimane & Bechki, Djamel & Bouguettaia, Hamza, 2020. "Output power loss of crystalline silicon photovoltaic modules due to dust accumulation in Saharan environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    17. Rahbar, Kiyarash & Eslami, Shahab & Pouladian-Kari, Ramin & Kirchner, Lars, 2022. "3-D numerical simulation and experimental study of PV module self-cleaning based on dew formation and single axis tracking," Applied Energy, Elsevier, vol. 316(C).
    18. Kazemian, Arash & Khatibi, Meysam & Ma, Tao & Peng, Jinqing & Hongxing, Yang, 2023. "A thermal performance-enhancing strategy of photovoltaic thermal systems by applying surface area partially covered by solar cells," Applied Energy, Elsevier, vol. 329(C).
    19. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    20. Ju, Xing & Abd El-Samie, Mostafa M. & Xu, Chao & Yu, Hangyu & Pan, Xinyu & Yang, Yongping, 2020. "A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter," Applied Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:189:y:2022:i:c:p:510-523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.