IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v189y2022icp1306-1323.html
   My bibliography  Save this article

Comparative analysis on the electrical and thermal performance of two CdTe multi-layer ventilated windows with and without a middle PCM layer: A preliminary numerical study

Author

Listed:
  • Ke, Wei
  • Ji, Jie
  • Wang, Chuyao
  • Zhang, Chengyan
  • Xie, Hao
  • Tang, Yayun
  • Lin, Yuan

Abstract

Driven by the single function and poor thermal performance of traditional building windows, a novel CdTe multi-layer ventilated window integrated with a middle PCM layer is proposed in this paper. Comparative study is conducted between this novel system and another CdTe ventilated window without the PCM layer. Mathematical model of the system is established and validated. Comparison case study is performed under two groups of typical winter and summer days in Hefei. Parameter analyses are conducted and annual performance comparisons are investigated under the typical meteorological year of Hefei. Main results are: (1) Electrical performance of the PV window system was enhanced and indoor thermal comfort was improved due to the utilization of PCM; (2) Tamb and Gsolar are respectively the most influential weather factors on thermal and electrical performance. Properly decreasing the channel height and increasing the PCM thickness can improve the comprehensive performance; (3) Annual Epv of the two window systems are 171.16 kWh and 169.55 kWh. Building with the novel window system could achieve a better indoor thermal comfort for the whole year. Annual indoor air-conditioning load is reduced by 1246.87 kWh and the energy-saving potential of this newly proposed CdTe PV ventilated window system is proved.

Suggested Citation

  • Ke, Wei & Ji, Jie & Wang, Chuyao & Zhang, Chengyan & Xie, Hao & Tang, Yayun & Lin, Yuan, 2022. "Comparative analysis on the electrical and thermal performance of two CdTe multi-layer ventilated windows with and without a middle PCM layer: A preliminary numerical study," Renewable Energy, Elsevier, vol. 189(C), pages 1306-1323.
  • Handle: RePEc:eee:renene:v:189:y:2022:i:c:p:1306-1323
    DOI: 10.1016/j.renene.2022.03.090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122003743
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.03.090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wieprzkowicz, Anna & Heim, Dariusz, 2020. "Modelling of thermal processes in a glazing structure with temperature dependent optical properties - An example of PCM-window," Renewable Energy, Elsevier, vol. 160(C), pages 653-662.
    2. Guo, Chao & Ji, Jie & Sun, Wei & Ma, Jinwei & He, Wei & Wang, Yanqiu, 2015. "Numerical simulation and experimental validation of tri-functional photovoltaic/thermal solar collector," Energy, Elsevier, vol. 87(C), pages 470-480.
    3. Ji, Jie & Luo, Chenglong & Chow, Tin-Tai & Sun, Wei & He, Wei, 2011. "Thermal characteristics of a building-integrated dual-function solar collector in water heating mode with natural circulation," Energy, Elsevier, vol. 36(1), pages 566-574.
    4. Liu, Dingming & Sun, Yanyi & Wilson, Robin & Wu, Yupeng, 2020. "Comprehensive evaluation of window-integrated semi-transparent PV for building daylight performance," Renewable Energy, Elsevier, vol. 145(C), pages 1399-1411.
    5. Huang, Junchao & Chen, Xi & Peng, Jinqing & Yang, Hongxing, 2021. "Modelling analyses of the thermal property and heat transfer performance of a novel compositive PV vacuum glazing," Renewable Energy, Elsevier, vol. 163(C), pages 1238-1252.
    6. Peng, Jinqing & Curcija, Dragan C. & Thanachareonkit, Anothai & Lee, Eleanor S. & Goudey, Howdy & Selkowitz, Stephen E., 2019. "Study on the overall energy performance of a novel c-Si based semitransparent solar photovoltaic window," Applied Energy, Elsevier, vol. 242(C), pages 854-872.
    7. Debbarma, Mary & Sudhakar, K. & Baredar, Prashant, 2017. "Thermal modeling, exergy analysis, performance of BIPV and BIPVT: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1276-1288.
    8. Wang, Chuyao & Ji, Jie & Yu, Bendong & Xu, Lijie & Wang, Qiliang & Tian, Xinyi, 2022. "Investigation on the operation strategy of a hybrid BIPV/T façade in plateau areas: An adaptive regulation method based on artificial neural network," Energy, Elsevier, vol. 239(PA).
    9. Xu, Lijie & Ji, Jie & Luo, Kun & Li, Zhaomeng & Xu, Ruru & Huang, Shengjuan, 2020. "Annual analysis of a multi-functional BIPV/T solar wall system in typical cities of China," Energy, Elsevier, vol. 197(C).
    10. Ke, Wei & Ji, Jie & Xu, Lijie & Yu, Bendong & Tian, Xinyi & Wang, Jun, 2021. "Numerical study and experimental validation of a multi-functional dual-air-channel solar wall system with PCM," Energy, Elsevier, vol. 227(C).
    11. Skandalos, Nikolaos & Karamanis, Dimitris, 2015. "PV glazing technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 306-322.
    12. Xu, Lijie & Luo, Kun & Ji, Jie & Yu, Bendong & Li, Zhaomeng & Huang, Shengjuan, 2020. "Study of a hybrid BIPV/T solar wall system," Energy, Elsevier, vol. 193(C).
    13. Solanki, S.C. & Dubey, Swapnil & Tiwari, Arvind, 2009. "Indoor simulation and testing of photovoltaic thermal (PV/T) air collectors," Applied Energy, Elsevier, vol. 86(11), pages 2421-2428, November.
    14. Sun, Wei & Ji, Jie & Luo, Chenglong & He, Wei, 2011. "Performance of PV-Trombe wall in winter correlated with south façade design," Applied Energy, Elsevier, vol. 88(1), pages 224-231, January.
    15. Guo, Wenwen & Kong, Li & Chow, Tintai & Li, Chunying & Zhu, Qunzhi & Qiu, Zhongzhu & Li, Lin & Wang, Yalin & Riffat, Saffa B., 2020. "Energy performance of photovoltaic (PV) windows under typical climates of China in terms of transmittance and orientation," Energy, Elsevier, vol. 213(C).
    16. Hu, Yue & Guo, Rui & Heiselberg, Per Kvols, 2020. "Performance and control strategy development of a PCM enhanced ventilated window system by a combined experimental and numerical study," Renewable Energy, Elsevier, vol. 155(C), pages 134-152.
    17. Yu, Guoqing & Yang, Hongxing & Luo, Daina & Cheng, Xu & Ansah, Mark Kyeredey, 2021. "A review on developments and researches of building integrated photovoltaic (BIPV) windows and shading blinds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    18. Chen, Mo & Zhang, Wei & Xie, Lingzhi & Ni, Zhichun & Wei, Qingzhu & Wang, Wei & Tian, Hao, 2019. "Experimental and numerical evaluation of the crystalline silicon PV window under the climatic conditions in southwest China," Energy, Elsevier, vol. 183(C), pages 584-598.
    19. Yu, Bendong & He, Wei & Li, Niansi & Wang, Liping & Cai, Jingyong & Chen, Hongbing & Ji, Jie & Xu, Gang, 2017. "Experimental and numerical performance analysis of a TC-Trombe wall," Applied Energy, Elsevier, vol. 206(C), pages 70-82.
    20. Wang, Chuyao & Ji, Jie & Uddin, Md Muin & Yu, Bendong & Song, Zhiying, 2021. "The study of a double-skin ventilated window integrated with CdTe cells in a rural building," Energy, Elsevier, vol. 215(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ke, Wei & Ji, Jie & Zhang, Chengyan & Xie, Hao & Tang, Yayun & Wang, Chuyao, 2023. "Effects of the PCM layer position on the comprehensive performance of a built-middle PV-Trombe wall system for building application in the heating season," Energy, Elsevier, vol. 267(C).
    2. Hossein Arasteh & Wahid Maref & Hamed H. Saber, 2023. "Energy and Thermal Performance Analysis of PCM-Incorporated Glazing Units Combined with Passive and Active Techniques: A Review Study," Energies, MDPI, vol. 16(3), pages 1-42, January.
    3. Ke, Wei & Ji, Jie & Zhang, Chengyan & Xie, Hao, 2023. "Modelling analysis and performance evaluation of a novel hybrid CdTe-PCM PV glass module for building envelope application," Energy, Elsevier, vol. 284(C).
    4. Tang, Yayun & Ji, Jie & Xie, Hao & Zhang, Chengyan & Tian, Xinyi, 2023. "Single- and double-inlet PV curtain wall systems using novel heat recovery technique for PV cooling, fresh and supply air handling: Design and performance assessment," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke, Wei & Ji, Jie & Xu, Lijie & Xie, Hao & Wang, Chuyao & Yu, Bendong, 2021. "Annual performance analysis of a dual-air-channel solar wall system with phase change material in different climate regions of China," Energy, Elsevier, vol. 235(C).
    2. Ke, Wei & Ji, Jie & Zhang, Chengyan & Xie, Hao, 2023. "Modelling analysis and performance evaluation of a novel hybrid CdTe-PCM PV glass module for building envelope application," Energy, Elsevier, vol. 284(C).
    3. Wang, Chuyao & Yang, Hongxing & Ji, Jie, 2023. "Investigation on overall energy performance of a novel multi-functional PV/T window," Applied Energy, Elsevier, vol. 352(C).
    4. Ke, Wei & Ji, Jie & Zhang, Chengyan & Xie, Hao & Tang, Yayun & Wang, Chuyao, 2023. "Effects of the PCM layer position on the comprehensive performance of a built-middle PV-Trombe wall system for building application in the heating season," Energy, Elsevier, vol. 267(C).
    5. Ke, Wei & Ji, Jie & Xu, Lijie & Yu, Bendong & Tian, Xinyi & Wang, Jun, 2021. "Numerical study and experimental validation of a multi-functional dual-air-channel solar wall system with PCM," Energy, Elsevier, vol. 227(C).
    6. Wang, Chuyao & Ji, Jie & Yu, Bendong & Zhang, Chengyan & Ke, Wei & Wang, Jun, 2022. "Comprehensive investigation on the luminous and energy-saving performance of the double-skin ventilated window integrated with CdTe cells," Energy, Elsevier, vol. 238(PB).
    7. Yu, Guoqing & Yang, Hongxing & Luo, Daina & Cheng, Xu & Ansah, Mark Kyeredey, 2021. "A review on developments and researches of building integrated photovoltaic (BIPV) windows and shading blinds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    8. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    9. Xu, Lijie & Ji, Jie & Yuan, Chengqing & Cai, Jingyong & Dai, Leyang, 2023. "Electrical and thermal performance of multidimensional semi-transparent CdTe PV window on offshore passenger ships in moored and sailing condition," Applied Energy, Elsevier, vol. 349(C).
    10. Zhang, Chengyan & Ji, Jie & Wang, Chuyao & Ke, Wei & Xie, Hao & Yu, Bendong, 2022. "Experimental and numerical studies on the thermal and electrical performance of a CdTe ventilated window integrated with vacuum glazing," Energy, Elsevier, vol. 244(PB).
    11. Yu, Bendong & Li, Niansi & Ji, Jie & Wang, Chuyao, 2021. "Thermal, electrical and purification performance of a novel thermal-catalytic CdTe double-layer breathing window in winter," Renewable Energy, Elsevier, vol. 167(C), pages 313-332.
    12. Yu, Bendong & Fan, Miaomiao & Gu, Tao & Xia, Xiaokang & Li, Niansi, 2022. "The performance analysis of the photo-thermal driven synergetic catalytic PV-Trombe wall," Renewable Energy, Elsevier, vol. 192(C), pages 264-278.
    13. Abdelrazik, A.S. & Shboul, Bashar & Elwardany, Mohamed & Zohny, R.N. & Osama, Ahmed, 2022. "The recent advancements in the building integrated photovoltaic/thermal (BIPV/T) systems: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    14. Wang, Chuyao & Ji, Jie & Yu, Bendong & Xu, Lijie & Wang, Qiliang & Tian, Xinyi, 2022. "Investigation on the operation strategy of a hybrid BIPV/T façade in plateau areas: An adaptive regulation method based on artificial neural network," Energy, Elsevier, vol. 239(PA).
    15. Wu, Zhenghong & Zhang, Ling & Su, Xiaosong & Wu, Jing & Liu, Zhongbing, 2022. "Experimental and numerical analysis of naturally ventilated PV-DSF in a humid subtropical climate," Renewable Energy, Elsevier, vol. 200(C), pages 633-646.
    16. Uddin, Md Muin & Wang, Chuyao & Zhang, Chengyan & Ji, Jie, 2022. "Investigating the energy-saving performance of a CdTe-based semi-transparent photovoltaic combined hybrid vacuum glazing window system," Energy, Elsevier, vol. 253(C).
    17. Tian, Xinyi & Wang, Jun & Ji, Jie & Wang, Chuyao & Ke, Wei & Yuan, Shuang, 2023. "A multifunctional curved CIGS photovoltaic/thermal roof system: A numerical and experimental investigation," Energy, Elsevier, vol. 273(C).
    18. Yu, Bendong & Li, Niansi & Yan, Chengchu & Liu, Xiaoyong & Liu, Huifang & Ji, Jie & Xu, Xiaoping, 2022. "The comprehensive performance analysis on a novel high-performance air-purification-sterilization type PV-Trombe wall," Renewable Energy, Elsevier, vol. 182(C), pages 1201-1218.
    19. Tan, Yutong & Peng, Jinqing & Luo, Yimo & Luo, Zhengyi & Curcija, Charlie & Fang, Yueping, 2022. "Numerical heat transfer modeling and climate adaptation analysis of vacuum-photovoltaic glazing," Applied Energy, Elsevier, vol. 312(C).
    20. Xie, Hao & Yu, Bendong & Wang, Jun & Ji, Jie, 2021. "A novel disinfected Trombe wall for space heating and virus inactivation: Concept and performance investigation," Applied Energy, Elsevier, vol. 291(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:189:y:2022:i:c:p:1306-1323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.