IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v186y2022icp350-365.html
   My bibliography  Save this article

Lab-scale and economic analysis of biogas production from swine manure

Author

Listed:
  • de Castro e Silva, Hellen Luisa
  • Huamán Córdova, Maxi Estefany
  • Barros, Regina Mambeli
  • Tiago Filho, Geraldo Lucio
  • Silva Lora, Electo Eduardo
  • Moreira Santos, Afonso Henriques
  • dos Santos, Ivan Felipe Silva
  • de Oliveira Botan, Maria Cláudia Costa
  • Pedreira, Juliano Romanzini
  • Flauzino, Barbara Karoline

Abstract

The current study presents a technical and economic evaluation of biogas production from swine manure in the Southern of Minas Gerais, Brazil. For the study, laboratory-scale experiments were performed by digesting the local samples in Anaerobic Sequencing Batch Reactors to evaluate the energy potential and economic feasibility for the entire enterprise in two scenarios. An environmental analysis, involving a matrix of environmental impact assessment and CO2 emissions avoided, was also performed. Scenario 1 resulted in Net Present Value greater than 0 for about 1,300 heads by including the sale of biofertilizer, while scenario 2 became economically viable from 10,468 heads, whose power was 14.69 kW. The economic viability of the system was ensured by the sale of organic fertilizer which accounted for approximately 72% of the revenue and highlighted the importance of its value in the implementation of the project. Most environmental impacts analyzed were positive, direct and permanent and CO2 emissions ranged from 2.81 to 27.10 tCO2eq/yr for 1,300–12,552 heads. Although the present study is applied to a specific enterprise, the methodology and the observed results can be applied in other national and international agricultural projects, contributing to the expansion of this technology.

Suggested Citation

  • de Castro e Silva, Hellen Luisa & Huamán Córdova, Maxi Estefany & Barros, Regina Mambeli & Tiago Filho, Geraldo Lucio & Silva Lora, Electo Eduardo & Moreira Santos, Afonso Henriques & dos Santos, Ivan, 2022. "Lab-scale and economic analysis of biogas production from swine manure," Renewable Energy, Elsevier, vol. 186(C), pages 350-365.
  • Handle: RePEc:eee:renene:v:186:y:2022:i:c:p:350-365
    DOI: 10.1016/j.renene.2021.12.114
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121018413
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.12.114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leme, Marcio Montagnana Vicente & Rocha, Mateus Henrique & Lora, Electo Eduardo Silva & Venturini, Osvaldo José & Lopes, Bruno Marciano & Ferreira, Cláudio Homero, 2014. "Techno-economic analysis and environmental impact assessment of energy recovery from Municipal Solid Waste (MSW) in Brazil," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 8-20.
    2. Biancamaria Torquati & Sonia Venanzi & Adriano Ciani & Francesco Diotallevi & Vincenzo Tamburi, 2014. "Environmental Sustainability and Economic Benefits of Dairy Farm Biogas Energy Production: A Case Study in Umbria," Sustainability, MDPI, vol. 6(10), pages 1-18, September.
    3. Barros, Regina Mambeli & Tiago Filho, Geraldo Lúcio, 2012. "Small hydropower and carbon credits revenue for an SHP project in national isolated and interconnected systems in Brazil," Renewable Energy, Elsevier, vol. 48(C), pages 27-34.
    4. Ribeiro, Eruin Martuscelli & Barros, Regina Mambeli & Tiago Filho, Geraldo Lúcio & dos Santos, Ivan Felipe Silva & Sampaio, Luma Canobre & Santos, Ticiane Vasco dos & da Silva, Fernando das Graças Bra, 2018. "GHG avoided emissions and economic analysis by power generation potential in posture aviaries in Brazil," Renewable Energy, Elsevier, vol. 120(C), pages 524-535.
    5. Bożym, Marta & Florczak, Iwona & Zdanowska, Paulina & Wojdalski, Janusz & Klimkiewicz, Marek, 2015. "An analysis of metal concentrations in food wastes for biogas production," Renewable Energy, Elsevier, vol. 77(C), pages 467-472.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. González, Ruben & García-Cascallana, José & Gómez, Xiomar, 2023. "Energetic valorization of biogas. A comparison between centralized and decentralized approach," Renewable Energy, Elsevier, vol. 215(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Y.P. & Huang, G.H. & Li, M.W., 2014. "An integrated optimization modeling approach for planning emission trading and clean-energy development under uncertainty," Renewable Energy, Elsevier, vol. 62(C), pages 31-46.
    2. Pablo Emilio Escamilla-García & Ana Lilia Coria-Páez & Francisco Pérez-Soto & Francisco Gutiérrez-Galicia & Carolina Caire & Blanca L. Martínez-Vargas, 2023. "Financial and Technical Evaluation of Energy Production by Biological and Thermal Treatments of MSW in Mexico City," Energies, MDPI, vol. 16(9), pages 1-14, April.
    3. Huayong Zhang & Di An & Yudong Cao & Yonglan Tian & Jinxian He, 2021. "Modeling the Methane Production Kinetics of Anaerobic Co-Digestion of Agricultural Wastes Using Sigmoidal Functions," Energies, MDPI, vol. 14(2), pages 1-12, January.
    4. Huang, T.Y. & Chiueh, P.T. & Lo, S.L., 2017. "Life-cycle environmental and cost impacts of reusing fly ash," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 255-260.
    5. Alya AlHammadi & Nasser Al-Saif & Ameena Saad Al-Sumaiti & Mousa Marzband & Tareefa Alsumaiti & Ehsan Heydarian-Forushani, 2022. "Techno-Economic Analysis of Hybrid Renewable Energy Systems Designed for Electric Vehicle Charging: A Case Study from the United Arab Emirates," Energies, MDPI, vol. 15(18), pages 1-20, September.
    6. Rajesh Banu Jeyakumar & Godvin Sharmila Vincent, 2022. "Recent Advances and Perspectives of Nanotechnology in Anaerobic Digestion: A New Paradigm towards Sludge Biodegradability," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    7. Riccardo Accorsi & Lorenzo Versari & Riccardo Manzini, 2015. "Glass vs. Plastic: Life Cycle Assessment of Extra-Virgin Olive Oil Bottles across Global Supply Chains," Sustainability, MDPI, vol. 7(3), pages 1-23, March.
    8. Josef Navrátil & Stanislav Martinát & Tomáš Krejčí & Petr Klusáček & Richard J. Hewitt, 2021. "Conversion of Post-Socialist Agricultural Premises as a Chance for Renewable Energy Production. Photovoltaics or Biogas Plants?," Energies, MDPI, vol. 14(21), pages 1-21, November.
    9. Zhang, Jing & Luo, Chuan-Yan & Curtis, Zachary & Deng, Shi-huai & Wu, Yang & Li, Yuan-wei, 2015. "Carbon dioxide emission accounting for small hydropower plants—A case study in southwest China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 755-761.
    10. Lerato Molieleng & Pieter Fourie & Ifeoma Nwafor, 2021. "Adoption of Climate Smart Agriculture by Communal Livestock Farmers in South Africa," Sustainability, MDPI, vol. 13(18), pages 1-18, September.
    11. Ghofrani-Isfahani, Parisa & Baniamerian, Hamed & Tsapekos, Panagiotis & Alvarado-Morales, Merlin & Kasama, Takeshi & Shahrokhi, Mohammad & Vossoughi, Manouchehr & Angelidaki, Irini, 2020. "Effect of metal oxide based TiO2 nanoparticles on anaerobic digestion process of lignocellulosic substrate," Energy, Elsevier, vol. 191(C).
    12. Ferreira, Jacson Hudson Inácio & Camacho, José Roberto & Malagoli, Juliana Almansa & Júnior, Sebastião Camargo Guimarães, 2016. "Assessment of the potential of small hydropower development in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 380-387.
    13. Marta Gandiglio & Fabrizio De Sario & Andrea Lanzini & Silvia Bobba & Massimo Santarelli & Gian Andrea Blengini, 2019. "Life Cycle Assessment of a Biogas-Fed Solid Oxide Fuel Cell (SOFC) Integrated in a Wastewater Treatment Plant," Energies, MDPI, vol. 12(9), pages 1-31, April.
    14. Cheng, Chuntian & Liu, Benxi & Chau, Kwok-Wing & Li, Gang & Liao, Shengli, 2015. "China׳s small hydropower and its dispatching management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 43-55.
    15. Zuzana LAJDOVA & Jan LAJDA & Jaroslav KAPUSTA & Peter BIELIK, 2016. "Consequences of maize cultivation intended for biogas production," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 62(12), pages 543-549.
    16. Toniolo, Sara & Pieretto, Chiara & Camana, Daniela, 2023. "A lifecycle-based indicator to support residual solid waste flow planning at the regional level," Utilities Policy, Elsevier, vol. 82(C).
    17. Xue, Xiaojun & Lv, Jiayang & Chen, Heng & Xu, Gang & Li, Qiubai, 2022. "Thermodynamic and economic analyses of a new compressed air energy storage system incorporated with a waste-to-energy plant and a biogas power plant," Energy, Elsevier, vol. 261(PB).
    18. Margallo, M. & Dominguez-Ramos, A. & Aldaco, R. & Bala, A. & Fullana, P. & Irabien, A., 2014. "Environmental sustainability assessment in the process industry: A case study of waste-to-energy plants in Spain," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 144-155.
    19. Stec, Agnieszka & Kordana, Sabina, 2015. "Analysis of profitability of rainwater harvesting, gray water recycling and drain water heat recovery systems," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 84-94.
    20. Pedro Arriagada & Bastien Dieppois & Moussa Sidibe & Oscar Link, 2019. "Impacts of Climate Change and Climate Variability on Hydropower Potential in Data-Scarce Regions Subjected to Multi-Decadal Variability," Energies, MDPI, vol. 12(14), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:186:y:2022:i:c:p:350-365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.