IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v178y2021icp79-95.html
   My bibliography  Save this article

Characterization of the wave resource variability in the French Basque coastal area based on a high-resolution hindcast

Author

Listed:
  • Delpey, Matthias
  • Lastiri, Ximun
  • Abadie, Stéphane
  • Roeber, Volker
  • Maron, Philippe
  • Liria, Pedro
  • Mader, Julien

Abstract

A wave resource characterisation is presented for the French Basque coastal region, with a specific focus on Bayonne nearshore area. The study is derived from a 10-year hindcast computation performed with a very high-resolution coastal implementation of a SWAN model. After a detailed validation of the model in intermediate and shallow water, the spatial, temporal, and spectral distributions of the local nearshore wave energy climate are characterized. Refraction over a local submarine canyon splits the coastal domain into two main regions with different general characteristics. In the southern Basque region, the spatial fluctuations of the wave resource increase drastically in shallow water. Variability nearshore was shown to be significantly higher than over the deeper part of the shelf. Noticeable hot-spots are found in the nearshore area around Bayonne, where the local wave resource substantially exceeds the outer shelf incident energy flux. Seasonal to hourly temporal fluctuations are also characterized at different nearshore locations and found to be very pronounced. The major wave resource variations found at reduced space-time scales highlight the strong influence of local small-scale bathymetry features in the Basque nearshore region.

Suggested Citation

  • Delpey, Matthias & Lastiri, Ximun & Abadie, Stéphane & Roeber, Volker & Maron, Philippe & Liria, Pedro & Mader, Julien, 2021. "Characterization of the wave resource variability in the French Basque coastal area based on a high-resolution hindcast," Renewable Energy, Elsevier, vol. 178(C), pages 79-95.
  • Handle: RePEc:eee:renene:v:178:y:2021:i:c:p:79-95
    DOI: 10.1016/j.renene.2021.05.167
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121008569
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.05.167?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bento, A. Rute & Martinho, Paulo & Guedes Soares, C., 2018. "Wave energy assessement for Northern Spain from a 33-year hindcast," Renewable Energy, Elsevier, vol. 127(C), pages 322-333.
    2. Lucero, Felipe & Catalán, Patricio A. & Ossandón, Álvaro & Beyá, José & Puelma, Andrés & Zamorano, Luis, 2017. "Wave energy assessment in the central-south coast of Chile," Renewable Energy, Elsevier, vol. 114(PA), pages 120-131.
    3. Reguero, B.G. & Losada, I.J. & Méndez, F.J., 2015. "A global wave power resource and its seasonal, interannual and long-term variability," Applied Energy, Elsevier, vol. 148(C), pages 366-380.
    4. Iglesias, G. & López, M. & Carballo, R. & Castro, A. & Fraguela, J.A. & Frigaard, P., 2009. "Wave energy potential in Galicia (NW Spain)," Renewable Energy, Elsevier, vol. 34(11), pages 2323-2333.
    5. Vicinanza, D. & Contestabile, P. & Ferrante, V., 2013. "Wave energy potential in the north-west of Sardinia (Italy)," Renewable Energy, Elsevier, vol. 50(C), pages 506-521.
    6. Bucchi, Andrea & Hearn, Grant E., 2016. "Analysis of the SEA-OWC-Clam wave energy device part B: Structural integrity analysis," Renewable Energy, Elsevier, vol. 99(C), pages 253-269.
    7. Luo, Yongyao & Nader, Jean-Roch & Cooper, Paul & Zhu, Song-Ping, 2014. "Nonlinear 2D analysis of the efficiency of fixed Oscillating Water Column wave energy converters," Renewable Energy, Elsevier, vol. 64(C), pages 255-265.
    8. Gonçalves, Marta & Martinho, Paulo & Guedes Soares, C., 2018. "A 33-year hindcast on wave energy assessment in the western French coast," Energy, Elsevier, vol. 165(PB), pages 790-801.
    9. Rusu, Liliana, 2019. "The wave and wind power potential in the western Black Sea," Renewable Energy, Elsevier, vol. 139(C), pages 1146-1158.
    10. García-Medina, Gabriel & Yang, Zhaoqing & Wu, Wei-Cheng & Wang, Taiping, 2021. "Wave resource characterization at regional and nearshore scales for the U.S. Alaska coast based on a 32-year high-resolution hindcast," Renewable Energy, Elsevier, vol. 170(C), pages 595-612.
    11. Yang, Zhaoqing & García-Medina, Gabriel & Wu, Wei-Cheng & Wang, Taiping, 2020. "Characteristics and variability of the nearshore wave resource on the U.S. West Coast," Energy, Elsevier, vol. 203(C).
    12. Guillou, Nicolas & Chapalain, Georges, 2018. "Annual and seasonal variabilities in the performances of wave energy converters," Energy, Elsevier, vol. 165(PB), pages 812-823.
    13. Guanche, R. & de Andrés, A.D. & Simal, P.D. & Vidal, C. & Losada, I.J., 2014. "Uncertainty analysis of wave energy farms financial indicators," Renewable Energy, Elsevier, vol. 68(C), pages 570-580.
    14. Iglesias, G. & Carballo, R., 2009. "Wave energy potential along the Death Coast (Spain)," Energy, Elsevier, vol. 34(11), pages 1963-1975.
    15. López, Iraide & Andreu, Jon & Ceballos, Salvador & Martínez de Alegría, Iñigo & Kortabarria, Iñigo, 2013. "Review of wave energy technologies and the necessary power-equipment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 413-434.
    16. Gomes, R.P.F. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2012. "Hydrodynamic optimization of an axisymmetric floating oscillating water column for wave energy conversion," Renewable Energy, Elsevier, vol. 44(C), pages 328-339.
    17. López-Ruiz, Alejandro & Bergillos, Rafael J. & Ortega-Sánchez, Miguel, 2016. "The importance of wave climate forecasting on the decision-making process for nearshore wave energy exploitation," Applied Energy, Elsevier, vol. 182(C), pages 191-203.
    18. Iglesias, G. & Carballo, R., 2010. "Offshore and inshore wave energy assessment: Asturias (N Spain)," Energy, Elsevier, vol. 35(5), pages 1964-1972.
    19. Xu, Conghao & Huang, Zhenhua, 2018. "A dual-functional wave-power plant for wave-energy extraction and shore protection: A wave-flume study," Applied Energy, Elsevier, vol. 229(C), pages 963-976.
    20. Wu, Wei-Cheng & Wang, Taiping & Yang, Zhaoqing & García-Medina, Gabriel, 2020. "Development and validation of a high-resolution regional wave hindcast model for U.S. West Coast wave resource characterization," Renewable Energy, Elsevier, vol. 152(C), pages 736-753.
    21. O'Connor, M. & Lewis, T. & Dalton, G., 2013. "Operational expenditure costs for wave energy projects and impacts on financial returns," Renewable Energy, Elsevier, vol. 50(C), pages 1119-1131.
    22. Cuttler, Michael V.W. & Hansen, Jeff E. & Lowe, Ryan J., 2020. "Seasonal and interannual variability of the wave climate at a wave energy hotspot off the southwestern coast of Australia," Renewable Energy, Elsevier, vol. 146(C), pages 2337-2350.
    23. Iglesias, G. & Carballo, R., 2010. "Wave energy and nearshore hot spots: The case of the SE Bay of Biscay," Renewable Energy, Elsevier, vol. 35(11), pages 2490-2500.
    24. Gunn, Kester & Stock-Williams, Clym, 2012. "Quantifying the global wave power resource," Renewable Energy, Elsevier, vol. 44(C), pages 296-304.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Astariz, S. & Iglesias, G., 2015. "The economics of wave energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 397-408.
    2. Shi, Xueli & Liang, Bingchen & Du, Shengtao & Shao, Zhuxiao & Li, Shaowu, 2022. "Wave energy assessment in the China East Adjacent Seas based on a 25-year wave-current interaction numerical simulation," Renewable Energy, Elsevier, vol. 199(C), pages 1381-1407.
    3. Ribeiro, A.S. & deCastro, M. & Costoya, X. & Rusu, Liliana & Dias, J.M. & Gomez-Gesteira, M., 2021. "A Delphi method to classify wave energy resource for the 21st century: Application to the NW Iberian Peninsula," Energy, Elsevier, vol. 235(C).
    4. Guillou, Nicolas & Chapalain, Georges, 2020. "Assessment of wave power variability and exploitation with a long-term hindcast database," Renewable Energy, Elsevier, vol. 154(C), pages 1272-1282.
    5. Liliana Rusu & Eugen Rusu, 2021. "Evaluation of the Worldwide Wave Energy Distribution Based on ERA5 Data and Altimeter Measurements," Energies, MDPI, vol. 14(2), pages 1-16, January.
    6. Lin, Yifan & Dong, Sheng & Wang, Zhifeng & Guedes Soares, C., 2019. "Wave energy assessment in the China adjacent seas on the basis of a 20-year SWAN simulation with unstructured grids," Renewable Energy, Elsevier, vol. 136(C), pages 275-295.
    7. Morim, Joao & Cartwright, Nick & Etemad-Shahidi, Amir & Strauss, Darrell & Hemer, Mark, 2016. "Wave energy resource assessment along the Southeast coast of Australia on the basis of a 31-year hindcast," Applied Energy, Elsevier, vol. 184(C), pages 276-297.
    8. Coe, Ryan G. & Ahn, Seongho & Neary, Vincent S. & Kobos, Peter H. & Bacelli, Giorgio, 2021. "Maybe less is more: Considering capacity factor, saturation, variability, and filtering effects of wave energy devices," Applied Energy, Elsevier, vol. 291(C).
    9. Zhou, Guoqing & Huang, Jingjin & Zhang, Guangyun, 2015. "Evaluation of the wave energy conditions along the coastal waters of Beibu Gulf, China," Energy, Elsevier, vol. 85(C), pages 449-457.
    10. Veigas, M. & López, M. & Iglesias, G., 2014. "Assessing the optimal location for a shoreline wave energy converter," Applied Energy, Elsevier, vol. 132(C), pages 404-411.
    11. James Allen & Konstantinos Sampanis & Jian Wan & Deborah Greaves & Jon Miles & Gregorio Iglesias, 2016. "Laboratory Tests in the Development of WaveCat," Sustainability, MDPI, vol. 8(12), pages 1-12, December.
    12. Sierra, J.P. & Martín, C. & Mösso, C. & Mestres, M. & Jebbad, R., 2016. "Wave energy potential along the Atlantic coast of Morocco," Renewable Energy, Elsevier, vol. 96(PA), pages 20-32.
    13. Jahangir, Mohammad Hossein & Mazinani, Mehran, 2020. "Evaluation of the convertible offshore wave energy capacity of the southern strip of the Caspian Sea," Renewable Energy, Elsevier, vol. 152(C), pages 331-346.
    14. Monteforte, M. & Lo Re, C. & Ferreri, G.B., 2015. "Wave energy assessment in Sicily (Italy)," Renewable Energy, Elsevier, vol. 78(C), pages 276-287.
    15. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    16. Chen, Xinping & Wang, Kaimin & Zhang, Zenghai & Zeng, Yindong & Zhang, Yao & O'Driscoll, Kieran, 2017. "An assessment of wind and wave climate as potential sources of renewable energy in the nearshore Shenzhen coastal zone of the South China Sea," Energy, Elsevier, vol. 134(C), pages 789-801.
    17. Martinez, A. & Iglesias, G., 2020. "Wave exploitability index and wave resource classification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    18. Sierra, Joan Pau & White, Adam & Mösso, Cesar & Mestres, Marc, 2017. "Assessment of the intra-annual and inter-annual variability of the wave energy resource in the Bay of Biscay (France)," Energy, Elsevier, vol. 141(C), pages 853-868.
    19. Iglesias, G. & Carballo, R., 2014. "Wave farm impact: The role of farm-to-coast distance," Renewable Energy, Elsevier, vol. 69(C), pages 375-385.
    20. Mirzaei, Ali & Tangang, Fredolin & Juneng, Liew, 2015. "Wave energy potential assessment in the central and southern regions of the South China Sea," Renewable Energy, Elsevier, vol. 80(C), pages 454-470.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:178:y:2021:i:c:p:79-95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.