IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v174y2021icp799-809.html
   My bibliography  Save this article

Distinct Miscanthus lignocellulose improves fungus secreting cellulases and xylanases for consistently enhanced biomass saccharification of diverse bioenergy crops

Author

Listed:
  • Liu, Peng
  • Li, Ao
  • Wang, Youmei
  • Cai, Qiuming
  • Yu, Haizhong
  • Li, Yuqi
  • Peng, Hao
  • Li, Qian
  • Wang, Yanting
  • Wei, Xiaoyang
  • Zhang, Ran
  • Tu, Yuanyuan
  • Xia, Tao
  • Peng, Liangcai

Abstract

Bioenergy crops provide enormous renewable biomass resources convertible for biofuel production, but lignocellulose recalcitrance fundamentally determines its enzymatic saccharification at high cost and low efficiency. In this study, total 30 diverse Miscanthus lignocellulose substrates were incubated with T. reesei strain to secret lignocellulose-degradation enzymes, and their major wall polymers features (cellulose crystallinity, hemicellulose arabinose and lignin H-monomer) were meanwhile examined with distinct impacts on the enzyme activities. Using characteristic Miscanthus (Msi62) de-lignin residue as inducing substrate with the reesei strain, this study detected that the Msi62-induced enzymes were of consistently higher enhancements on enzymatic saccharification of various lignocellulose residues examined in 17 grassy and woody bioenergy crops, particularly for the hemicellulose hydrolyses, compared to other two reesei-secreted cellulases and three commercial enzymes. Notably, based on SDS-gel protein separation profiling and LC-MS/MS analysis, the Msi62-induced enzymes consist of distinct cellulases (CBHI, BG, EGII) compositions and high-activity xylanases. Therefore, this study has demonstrated an applicable approach to achieve the optimal cellulases and xylanases cocktails that enable for low-costly and high-efficient enzymatic saccharification of diverse lignocellulose sources, providing a potential strategy for large-scale biofuel production in all major bioenergy crops.

Suggested Citation

  • Liu, Peng & Li, Ao & Wang, Youmei & Cai, Qiuming & Yu, Haizhong & Li, Yuqi & Peng, Hao & Li, Qian & Wang, Yanting & Wei, Xiaoyang & Zhang, Ran & Tu, Yuanyuan & Xia, Tao & Peng, Liangcai, 2021. "Distinct Miscanthus lignocellulose improves fungus secreting cellulases and xylanases for consistently enhanced biomass saccharification of diverse bioenergy crops," Renewable Energy, Elsevier, vol. 174(C), pages 799-809.
  • Handle: RePEc:eee:renene:v:174:y:2021:i:c:p:799-809
    DOI: 10.1016/j.renene.2021.04.107
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121006273
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.04.107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin, Wenxiang & Chen, Ling & Hu, Meng & Sun, Dan & Li, Ao & Li, Ying & Hu, Zhen & Zhou, Shiguang & Tu, Yuanyuan & Xia, Tao & Wang, Yanting & Xie, Guosheng & Li, Yanbin & Bai, Baowei & Peng, Liangcai, 2016. "Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed," Applied Energy, Elsevier, vol. 175(C), pages 82-90.
    2. Edward M. Rubin, 2008. "Genomics of cellulosic biofuels," Nature, Nature, vol. 454(7206), pages 841-845, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ulaganathan, Kandasamy & Goud, Sravanthi & Reddy, Madhavi & Kayalvili, Ulaganathan, 2017. "Genome engineering for breaking barriers in lignocellulosic bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1080-1107.
    2. Rastogi, Meenal & Shrivastava, Smriti, 2017. "Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 330-340.
    3. Su, Yu & Zhang, Yanfang & Qi, Jinxia & Xue, Tiantian & Xu, Minggao & Yang, Jiuzhong & Pan, Yang & Lin, Zhenkun, 2020. "Upgrading of furans from in situ catalytic fast pyrolysis of xylan by reduced graphene oxide supported Pt nanoparticles," Renewable Energy, Elsevier, vol. 152(C), pages 94-101.
    4. Debora Noma Okamoto & Vitor Baptista Ferrari & Suzan Pantaroto Vasconcellos & João Henrique Ghilardi Lago & Itamar Soares de Melo, 2017. "Actinomycetes as Tools for Biotransformations of Lignans," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 1(5), pages 1407-1409, October.
    5. Gonçalves da Silva, C., 2010. "The fossil energy/climate change crunch: Can we pin our hopes on new energy technologies?," Energy, Elsevier, vol. 35(3), pages 1312-1316.
    6. Ren, Xueyong & Shanb Ghazani, Mohammad & Zhu, Hui & Ao, Wenya & Zhang, Han & Moreside, Emma & Zhu, Jinjiao & Yang, Pu & Zhong, Na & Bi, Xiaotao, 2022. "Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review," Applied Energy, Elsevier, vol. 315(C).
    7. Zhu, Shengdong & Luo, Fang & Huang, Wenjing & Huang, Wangxiang & Wu, Yuanxin, 2017. "Comparison of three fermentation strategies for alleviating the negative effect of the ionic liquid 1-ethyl-3-methylimidazolium acetate on lignocellulosic ethanol production," Applied Energy, Elsevier, vol. 197(C), pages 124-131.
    8. Li, Lin & Sun, Zeyi & Yao, Xufeng & Wang, Donghai, 2016. "Optimal production scheduling for energy efficiency improvement in biofuel feedstock preprocessing considering work-in-process particle separation," Energy, Elsevier, vol. 96(C), pages 474-481.
    9. González Martínez, María & Dupont, Capucine & da Silva Perez, Denilson & Mortha, Gérard & Thiéry, Sébastien & Meyer, Xuân-mi & Gourdon, Christophe, 2020. "Understanding the torrefaction of woody and agricultural biomasses through their extracted macromolecular components. Part 1: Experimental thermogravimetric solid mass loss," Energy, Elsevier, vol. 205(C).
    10. Luiz Filipe Paiva Brandão & Jez Willian Batista Braga & Paulo Anselmo Ziani Suarez, 2020. "Alternative butanol/gasoline and butanol/diesel fuel blends: An analysis of the interdependence between physical-chemical properties by a multivariate principal component analysis model," Energy & Environment, , vol. 31(5), pages 733-754, August.
    11. Yang, Hanmin & Cui, Yuxiao & Han, Tong & Sandström, Linda & Jönsson, Pär & Yang, Weihong, 2022. "High-purity syngas production by cascaded catalytic reforming of biomass pyrolysis vapors," Applied Energy, Elsevier, vol. 322(C).
    12. Mamata Singhvi & Beom Soo Kim, 2020. "Current Developments in Lignocellulosic Biomass Conversion into Biofuels Using Nanobiotechology Approach," Energies, MDPI, vol. 13(20), pages 1-20, October.
    13. Alam, Aftab & Wang, Youmei & Liu, Fei & Kang, Heng & Tang, Shang-wen & Wang, Yanting & Cai, Qiuming & Wang, Hailang & Peng, Hao & Li, Qian & Zeng, Yajun & Tu, Yuanyuan & Xia, Tao & Peng, Liangcai, 2020. "Modeling of optimal green liquor pretreatment for enhanced biomass saccharification and delignification by distinct alteration of wall polymer features and biomass porosity in Miscanthus," Renewable Energy, Elsevier, vol. 159(C), pages 1128-1138.
    14. Wang, Youmei & Liu, Peng & Zhang, Guifen & Yang, Qiaomei & Lu, Jun & Xia, Tao & Peng, Liangcai & Wang, Yanting, 2021. "Cascading of engineered bioenergy plants and fungi sustainable for low-cost bioethanol and high-value biomaterials under green-like biomass processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    15. Matei, Jéssica C. & Soares, Marlene & Bonato, Aline Cristine H. & de Freitas, Maria Paula A. & Helm, Cristiane V. & Maroldi, Wédisley V. & Magalhães, Washington L.E. & Haminiuk, Charles W.I. & Maciel,, 2020. "Enzymatic delignification of sugar cane bagasse and rice husks and its effect in saccharification," Renewable Energy, Elsevier, vol. 157(C), pages 987-997.
    16. Krystyna Kurowska & Renata Marks-Bielska & Stanisław Bielski & Hubert Kryszk & Algirdas Jasinskas, 2020. "Food Security in the Context of Liquid Biofuels Production," Energies, MDPI, vol. 13(23), pages 1-16, November.
    17. Gupta, Anubhuti & Verma, Jay Prakash, 2015. "Sustainable bio-ethanol production from agro-residues: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 550-567.
    18. Xu, Youjie & Wang, Donghai, 2017. "Integrating starchy substrate into cellulosic ethanol production to boost ethanol titers and yields," Applied Energy, Elsevier, vol. 195(C), pages 196-203.
    19. Fu, Yansong & Gao, Hairong & Yu, Hua & Yang, Qiaomei & Peng, Hao & Liu, Peng & Li, Yuqi & Hu, Zhen & Zhang, Ran & Li, Jingyang & Qi, Zhi & Wang, Lingqiang & Peng, Liangcai & Wang, Yanting, 2022. "Specific lignin and cellulose depolymerization of sugarcane bagasse for maximum bioethanol production under optimal chemical fertilizer pretreatment with hemicellulose retention and liquid recycling," Renewable Energy, Elsevier, vol. 200(C), pages 1371-1381.
    20. Puri, Munish & Abraham, Reinu E. & Barrow, Colin J., 2012. "Biofuel production: Prospects, challenges and feedstock in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6022-6031.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:174:y:2021:i:c:p:799-809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.