IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v174y2021icp170-177.html
   My bibliography  Save this article

Design of hydrothermal and subsequent lime pretreatment for fermentable sugar and bioethanol production from acacia wood

Author

Listed:
  • Lee, Ilgyu
  • Yu, Ju-Hyun

Abstract

In this study, lime (calcium hydroxide) treatment (LT) was applied as an alkaline pretreatment subsequent to hydrothermal treatment (HT) in terms of fermentable sugar and bioethanol production from acacia wood. To maximize the hydrolysis of cellulose and hemicellulose, the condition of 200 °C for 10 min of HT was selected for subsequent lime treatment. The optimum conditions of LT were established to be a ratio of calcium hydroxide to hydrothermally treated acacia biomass of 12.2%, temperature of 70.9 °C, and reaction time of 23.5 h using a response surface methodology, and the maximum glucose yield by prediction and experiment were determined to be 74.4% and 73.5%, respectively. Further mechanical refining accelerated the access of the enzyme to glucan, resulting in an increase in glucose conversion (80.5%). Although the glucose yield by LT was 21.5% higher than that of HT, the ethanol yield was 33.5% lower due to the negative effect of residual calcium ions on yeast fermentation.

Suggested Citation

  • Lee, Ilgyu & Yu, Ju-Hyun, 2021. "Design of hydrothermal and subsequent lime pretreatment for fermentable sugar and bioethanol production from acacia wood," Renewable Energy, Elsevier, vol. 174(C), pages 170-177.
  • Handle: RePEc:eee:renene:v:174:y:2021:i:c:p:170-177
    DOI: 10.1016/j.renene.2021.04.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121005826
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.04.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Zhi-Wen & Zhu, Ming-Qiang & Li, Ming-Fei & Wei, Qin & Sun, Run-Cang, 2019. "Effects of hydrothermal treatment on enhancing enzymatic hydrolysis of rapeseed straw," Renewable Energy, Elsevier, vol. 134(C), pages 446-452.
    2. Haghighi Mood, Sohrab & Hossein Golfeshan, Amir & Tabatabaei, Meisam & Salehi Jouzani, Gholamreza & Najafi, Gholam Hassan & Gholami, Mehdi & Ardjmand, Mehdi, 2013. "Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 77-93.
    3. Singh, Renu & Shukla, Ashish & Tiwari, Sapna & Srivastava, Monika, 2014. "A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 713-728.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria El Hage & Nicolas Louka & Sid-Ahmed Rezzoug & Thierry Maugard & Sophie Sablé & Mohamed Koubaa & Espérance Debs & Zoulikha Maache-Rezzoug, 2023. "Bioethanol Production from Woody Biomass: Recent Advances on the Effect of Pretreatments on the Bioconversion Process and Energy Yield Aspects," Energies, MDPI, vol. 16(13), pages 1-31, June.
    2. Wu, Wei & Taipabu, Muhammad Ikhsan & Chang, Wei-Chen & Viswanathan, Karthickeyan & Xie, Yi-Lin & Kuo, Po-Chih, 2022. "Economic dispatch of torrefied biomass polygeneration systems considering power/SNG grid demands," Renewable Energy, Elsevier, vol. 196(C), pages 707-719.
    3. Islam, Md Khairul & Rehman, Shazia & Guan, Jianyu & Lau, Chun-Yin & Tse, Ho-Yin & Yeung, Chi Shun & Leu, Shao-Yuan, 2021. "Biphasic pretreatment for energy and carbon efficient conversion of lignocellulose into bioenergy and reactive lignin," Applied Energy, Elsevier, vol. 303(C).
    4. Poolakkalody, Najya Jabeen & Ramesh, Kaviraj & Palliprath, Suchithra & Nittoor, Shima Namath & Santiago, Rogelio & Kabekkodu, Shama Prasada & Manisseri, Chithra, 2023. "Understanding triethylammonium hydrogen sulfate ([TEA][HSO4]) pretreatment induced changes in Pennisetum polystachion cell wall matrix and its implications on biofuel yield," Renewable Energy, Elsevier, vol. 209(C), pages 420-430.
    5. Ayala-Cortés, Alejandro & Arcelus-Arrillaga, Pedro & Millan, Marcos & Okoye, Patrick U. & Arancibia-Bulnes, Camilo A. & Pacheco-Catalán, Daniella Esperanza & Villafán-Vidales, Heidi Isabel, 2022. "Solar hydrothermal processing of agave bagasse: Insights on the effect of operational parameters," Renewable Energy, Elsevier, vol. 192(C), pages 14-23.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Younho & Cho, Eun Jin & Park, Chan Song & Oh, Chi Hoon & Park, Bok-Jae & Bae, Hyeun-Jong, 2019. "A strategy for sequential fermentation by Saccharomyces cerevisiae and Pichia stipitis in bioethanol production from hardwoods," Renewable Energy, Elsevier, vol. 139(C), pages 1281-1289.
    2. Rooni, Vahur & Raud, Merlin & Kikas, Timo, 2017. "The freezing pre-treatment of lignocellulosic material: A cheap alternative for Nordic countries," Energy, Elsevier, vol. 139(C), pages 1-7.
    3. Halder, Pobitra & Kundu, Sazal & Patel, Savankumar & Setiawan, Adi & Atkin, Rob & Parthasarthy, Rajarathinam & Paz-Ferreiro, Jorge & Surapaneni, Aravind & Shah, Kalpit, 2019. "Progress on the pre-treatment of lignocellulosic biomass employing ionic liquids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 268-292.
    4. Kostas, Emily T. & Beneroso, Daniel & Robinson, John P., 2017. "The application of microwave heating in bioenergy: A review on the microwave pre-treatment and upgrading technologies for biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 12-27.
    5. Yan, Zhipei & Li, Jihong & Li, Shizhong & Chang, Sandra & Cui, Ting & Jiang, Yan & Cong, Guangtao & Yu, Menghui & Zhang, Lei, 2015. "Impact of lignin removal on the enzymatic hydrolysis of fermented sweet sorghum bagasse," Applied Energy, Elsevier, vol. 160(C), pages 641-647.
    6. Singh, Renu & Srivastava, Monika & Shukla, Ashish, 2016. "Environmental sustainability of bioethanol production from rice straw in India: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 202-216.
    7. de Lucas, Rosymar Coutinho & de Oliveira, Tássio Brito & Lima, Matheus Sanitá & Pasin, Thiago Machado & Scarcella, Ana Sílvia de Almeida & Ribeiro, Liliane Fraga Costa & Carvalho, Caio & Damasio, Andr, 2021. "The profile secretion of Aspergillus clavatus: Different pre-treatments of sugarcane bagasse distinctly induces holocellulases for the lignocellulosic biomass conversion into sugar," Renewable Energy, Elsevier, vol. 165(P1), pages 748-757.
    8. Rastogi, Meenal & Shrivastava, Smriti, 2017. "Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 330-340.
    9. Sahu, Omprakash, 2021. "Appropriateness of rose (Rosa hybrida) for bioethanol conversion with enzymatic hydrolysis: Sustainable development on green fuel production," Energy, Elsevier, vol. 232(C).
    10. Onu Onu Olughu & Lope G. Tabil & Tim Dumonceaux & Edmund Mupondwa & Duncan Cree, 2021. "Comparative Study on Quality of Fuel Pellets from Switchgrass Treated with Different White-Rot Fungi," Energies, MDPI, vol. 14(22), pages 1-19, November.
    11. Kumari, Dolly & Singh, Radhika, 2018. "Pretreatment of lignocellulosic wastes for biofuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 877-891.
    12. Dawid Szwarc & Anna Nowicka & Katarzyna Głowacka, 2022. "Cross-Comparison of the Impact of Grass Silage Pulsed Electric Field and Microwave-Induced Disintegration on Biogas Production Efficiency," Energies, MDPI, vol. 15(14), pages 1-10, July.
    13. Mhatre, Apurv & Kalscheur, Bethany & Mckeown, Haley & Bhakta, Karan & Sarnaik, Aditya P. & Flores, Andrew & Nielsen, David R. & Wang, Xuan & Soundappan, Thiagarajan & Varman, Arul M., 2022. "Consolidated bioprocessing of hemicellulose to fuels and chemicals through an engineered Bacillus subtilis-Escherichia coli consortium," Renewable Energy, Elsevier, vol. 193(C), pages 288-298.
    14. Jeong, Hanseob & Lee, Jaejung & Ju, Young Min & Lee, Soo Min, 2019. "Using electro-coagulation treatment to remove phenolic compounds and furan derivatives in hydrolysates resulting from pilot-scale supercritical water hydrolysis of Mongolian oak," Renewable Energy, Elsevier, vol. 138(C), pages 971-979.
    15. Siqueira, Marcos Rechi & Reginatto, Valeria, 2015. "Inhibition of fermentative H2 production by hydrolysis byproducts of lignocellulosic substrates," Renewable Energy, Elsevier, vol. 80(C), pages 109-116.
    16. Patricia Portero-Barahona & Enrique Javier Carvajal-Barriga & Jesús Martín-Gil & Pablo Martín-Ramos, 2019. "Sugarcane Bagasse Hydrolysis Enhancement by Microwave-Assisted Sulfolane Pretreatment," Energies, MDPI, vol. 12(9), pages 1-15, May.
    17. Almohammed, Fouad & Mhemdi, Houcine & Vorobiev, Eugène, 2016. "Pulsed electric field treatment of sugar beet tails as a sustainable feedstock for bioethanol production," Applied Energy, Elsevier, vol. 162(C), pages 49-57.
    18. Yusri, I.M. & Mamat, R. & Najafi, G. & Razman, A. & Awad, Omar I. & Azmi, W.H. & Ishak, W.F.W. & Shaiful, A.I.M., 2017. "Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: A review on engine performance and exhaust emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 169-181.
    19. Song, Minkyung & Duc Pham, Hong & Seon, Jiyun & Chul Woo, Hee, 2015. "Marine brown algae: A conundrum answer for sustainable biofuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 782-792.
    20. Kang, Shimin & Fu, Jinxia & Zhang, Gang, 2018. "From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 340-362.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:174:y:2021:i:c:p:170-177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.