IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v173y2021icp972-986.html
   My bibliography  Save this article

Fair consumer outcomes in the balance: Data driven analysis of distributed PV curtailment

Author

Listed:
  • Stringer, Naomi
  • Haghdadi, Navid
  • Bruce, Anna
  • MacGill, Iain

Abstract

This study analyses distributed photovoltaic (D-PV) system curtailment and impacts on consumers in response to high network voltages. Novel analytical techniques are applied to a unique real-world operational dataset of over 1300 D-PV systems in South Australia to identify ‘tripping’. Data-driven methods are valuable due to the diverse range of D-PV conditions. South Australia is an insightful case study due to its D-PV rich network, where around one third of standalone housing now has a PV system. Findings suggest that overall curtailment is low, however some sites experience significant impacts of up to 46–95% curtailment per day, particularly during spring. The uneven distribution of impacts raises concerns regarding fairness, however network solutions to increase hosting capacity must be carefully balanced given the potential costs imposed on consumers without D-PV. Upscaling the estimated D-PV generation loss to all of South Australia indicates a total value of $1.2m-$4.5m per year in lost value to consumers with D-PV, considering clear sky days. Implications for policy makers and network operators are discussed in the context of strong projected D-PV uptake in Australia, and around the world. It is proposed that data-driven methods could inform future regulatory assessment processes to improve outcomes for all consumers.

Suggested Citation

  • Stringer, Naomi & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2021. "Fair consumer outcomes in the balance: Data driven analysis of distributed PV curtailment," Renewable Energy, Elsevier, vol. 173(C), pages 972-986.
  • Handle: RePEc:eee:renene:v:173:y:2021:i:c:p:972-986
    DOI: 10.1016/j.renene.2021.04.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121005322
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.04.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Passey, Robert & Spooner, Ted & MacGill, Iain & Watt, Muriel & Syngellakis, Katerina, 2011. "The potential impacts of grid-connected distributed generation and how to address them: A review of technical and non-technical factors," Energy Policy, Elsevier, vol. 39(10), pages 6280-6290, October.
    2. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Optimal energy management in all-electric residential energy systems with heat and electricity storage," Applied Energy, Elsevier, vol. 254(C).
    3. Howlader, Abdul Motin & Sadoyama, Staci & Roose, Leon R. & Sepasi, Saeed, 2018. "Distributed voltage regulation using Volt-Var controls of a smart PV inverter in a smart grid: An experimental study," Renewable Energy, Elsevier, vol. 127(C), pages 145-157.
    4. Cagnano, A. & De Tuglie, E., 2015. "Centralized voltage control for distribution networks with embedded PV systems," Renewable Energy, Elsevier, vol. 76(C), pages 173-185.
    5. Kharrazi, A. & Sreeram, V. & Mishra, Y., 2020. "Assessment techniques of the impact of grid-tied rooftop photovoltaic generation on the power quality of low voltage distribution network - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    6. Wendy Miller & Aaron Liu & Zakaria Amin & Andreas Wagner, 2018. "Power Quality and Rooftop-Photovoltaic Households: An Examination of Measured Data at Point of Customer Connection," Sustainability, MDPI, vol. 10(4), pages 1-27, April.
    7. Collins, L. & Ward, J.K., 2015. "Real and reactive power control of distributed PV inverters for overvoltage prevention and increased renewable generation hosting capacity," Renewable Energy, Elsevier, vol. 81(C), pages 464-471.
    8. Malik, Anam & Haghdadi, Navid & MacGill, Iain & Ravishankar, Jayashri, 2019. "Appliance level data analysis of summer demand reduction potential from residential air conditioner control," Applied Energy, Elsevier, vol. 235(C), pages 776-785.
    9. Ferdowsi, Farzad & Mehraeen, Shahab & Upton, Gregory B., 2020. "Assessing distribution network sensitivity to voltage rise and flicker under high penetration of behind-the-meter solar," Renewable Energy, Elsevier, vol. 152(C), pages 1227-1240.
    10. Vergara, Pedro P. & Salazar, Mauricio & Mai, Tam T. & Nguyen, Phuong H. & Slootweg, Han, 2020. "A comprehensive assessment of PV inverters operating with droop control for overvoltage mitigation in LV distribution networks," Renewable Energy, Elsevier, vol. 159(C), pages 172-183.
    11. Vargas Gil, Gloria Milena & Bittencourt Aguiar Cunha, Rafael & Giuseppe Di Santo, Silvio & Machado Monaro, Renato & Fragoso Costa, Fabiano & Sguarezi Filho, Alfeu J., 2020. "Photovoltaic energy in South America: Current state and grid regulation for large-scale and distributed photovoltaic systems," Renewable Energy, Elsevier, vol. 162(C), pages 1307-1320.
    12. Tonkoski, Reinaldo & Lopes, Luiz A.C., 2011. "Impact of active power curtailment on overvoltage prevention and energy production of PV inverters connected to low voltage residential feeders," Renewable Energy, Elsevier, vol. 36(12), pages 3566-3574.
    13. Few, Sheridan & Djapic, Predrag & Strbac, Goran & Nelson, Jenny & Candelise, Chiara, 2020. "Assessing local costs and impacts of distributed solar PV using high resolution data from across Great Britain," Renewable Energy, Elsevier, vol. 162(C), pages 1140-1150.
    14. Bell, Keith & Gill, Simon, 2018. "Delivering a highly distributed electricity system: Technical, regulatory and policy challenges," Energy Policy, Elsevier, vol. 113(C), pages 765-777.
    15. Ismael, Sherif M. & Abdel Aleem, Shady H.E. & Abdelaziz, Almoataz Y. & Zobaa, Ahmed F., 2019. "State-of-the-art of hosting capacity in modern power systems with distributed generation," Renewable Energy, Elsevier, vol. 130(C), pages 1002-1020.
    16. Bayer, Benjamin & Matschoss, Patrick & Thomas, Heiko & Marian, Adela, 2018. "The German experience with integrating photovoltaic systems into the low-voltage grids," Renewable Energy, Elsevier, vol. 119(C), pages 129-141.
    17. Brinkel, N.B.G. & Schram, W.L. & AlSkaif, T.A. & Lampropoulos, I. & van Sark, W.G.J.H.M., 2020. "Should we reinforce the grid? Cost and emission optimization of electric vehicle charging under different transformer limits," Applied Energy, Elsevier, vol. 276(C).
    18. Matschoss, Patrick & Bayer, Benjamin & Thomas, Heiko & Marian, Adela, 2019. "The German incentive regulation and its practical impact on the grid integration of renewable energy systems," Renewable Energy, Elsevier, vol. 134(C), pages 727-738.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abhnil Amtesh Prasad & Merlinde Kay, 2021. "Prediction of Solar Power Using Near-Real Time Satellite Data," Energies, MDPI, vol. 14(18), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Rui & Meunier, Simon & Protopapadaki, Christina & Saelens, Dirk, 2023. "A review of European low-voltage distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    2. Ranaweera, Iromi & Midtgård, Ole-Morten & Korpås, Magnus, 2017. "Distributed control scheme for residential battery energy storage units coupled with PV systems," Renewable Energy, Elsevier, vol. 113(C), pages 1099-1110.
    3. Rajabi, A. & Elphick, S. & David, J. & Pors, A. & Robinson, D., 2022. "Innovative approaches for assessing and enhancing the hosting capacity of PV-rich distribution networks: An Australian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Kolhe, Mohan Lal & Rasul, M.J.M.A., 2020. "3-Phase grid-connected building integrated photovoltaic system with reactive power control capability," Renewable Energy, Elsevier, vol. 154(C), pages 1065-1075.
    5. Chathurangi, D. & Jayatunga, U. & Perera, S. & Agalgaonkar, A.P. & Siyambalapitiya, T., 2021. "Comparative evaluation of solar PV hosting capacity enhancement using Volt-VAr and Volt-Watt control strategies," Renewable Energy, Elsevier, vol. 177(C), pages 1063-1075.
    6. Vincent Umoh & Innocent Davidson & Abayomi Adebiyi & Unwana Ekpe, 2023. "Methods and Tools for PV and EV Hosting Capacity Determination in Low Voltage Distribution Networks—A Review," Energies, MDPI, vol. 16(8), pages 1-25, April.
    7. Chi-Thang Phan-Tan & Martin Hill, 2021. "Decentralized Optimal Control for Photovoltaic Systems Using Prediction in the Distribution Systems," Energies, MDPI, vol. 14(13), pages 1-21, July.
    8. Pankaj Verma & Nitish Katal & Bhisham Sharma & Subrata Chowdhury & Abolfazl Mehbodniya & Julian L. Webber & Ali Bostani, 2022. "Voltage Rise Mitigation in PV Rich LV Distribution Networks Using DC/DC Converter Level Active Power Curtailment Method," Energies, MDPI, vol. 15(16), pages 1-16, August.
    9. Syed Muhammad Ahsan & Hassan Abbas Khan & Akhtar Hussain & Sarmad Tariq & Nauman Ahmad Zaffar, 2021. "Harmonic Analysis of Grid-Connected Solar PV Systems with Nonlinear Household Loads in Low-Voltage Distribution Networks," Sustainability, MDPI, vol. 13(7), pages 1-23, March.
    10. Koirala, Arpan & Van Acker, Tom & D’hulst, Reinhilde & Van Hertem, Dirk, 2022. "Hosting capacity of photovoltaic systems in low voltage distribution systems: A benchmark of deterministic and stochastic approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    11. Huda, A.S.N. & Živanović, R., 2017. "Large-scale integration of distributed generation into distribution networks: Study objectives, review of models and computational tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 974-988.
    12. Hartvigsson, Elias & Odenberger, Mikael & Chen, Peiyuan & Nyholm, Emil, 2021. "Estimating national and local low-voltage grid capacity for residential solar photovoltaic in Sweden, UK and Germany," Renewable Energy, Elsevier, vol. 171(C), pages 915-926.
    13. Meunier, Simon & Protopapadaki, Christina & Baetens, Ruben & Saelens, Dirk, 2021. "Impact of residential low-carbon technologies on low-voltage grid reinforcements," Applied Energy, Elsevier, vol. 297(C).
    14. Stringer, Naomi & Haghdadi, Navid & Bruce, Anna & Riesz, Jenny. & MacGill, Iain, 2020. "Observed behavior of distributed photovoltaic systems during major voltage disturbances and implications for power system security," Applied Energy, Elsevier, vol. 260(C).
    15. Heba M. Abdullah & Rashad M. Kamel & Anas Tahir & Azzam Sleit & Adel Gastli, 2020. "The Simultaneous Impact of EV Charging and PV Inverter Reactive Power on the Hosting Distribution System’s Performance: A Case Study in Kuwait," Energies, MDPI, vol. 13(17), pages 1-22, August.
    16. Zhang, Zhengfa & da Silva, Filipe Faria & Guo, Yifei & Bak, Claus Leth & Chen, Zhe, 2022. "Coordinated voltage control in unbalanced distribution networks with two-stage distributionally robust chance-constrained receding horizon control," Renewable Energy, Elsevier, vol. 198(C), pages 907-915.
    17. da Silva Benedito, Ricardo & Zilles, Roberto & Pinho, João Tavares, 2021. "Overcoming the power factor apparent degradation of loads fed by photovoltaic distributed generators," Renewable Energy, Elsevier, vol. 164(C), pages 1364-1375.
    18. Rozmysław Mieński & Irena Wasiak & Paweł Kelm, 2023. "Integration of PV Sources in Prosumer Installations Eliminating Their Negative Impact on the Supplying Grid and Optimizing the Microgrid Operation," Energies, MDPI, vol. 16(8), pages 1-17, April.
    19. Ziyu Wang & Guangya Yang, 2019. "Static Operational Impacts of Residential Solar PV Plants on the Medium Voltage Distribution Grids—A Case Study Based on the Danish Island Bornholm," Energies, MDPI, vol. 12(8), pages 1-16, April.
    20. Jin-Sol Song & Ji-Soo Kim & Barry Mather & Chul-Hwan Kim, 2021. "Hosting Capacity Improvement Method Using MV–MV Solid-State-Transformer," Energies, MDPI, vol. 14(3), pages 1-12, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:173:y:2021:i:c:p:972-986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.