IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v173y2021icp283-296.html

Utilization of waste tire powder for gaseous fuel generation via CO2 gasification using waste heat in converter vaporization cooling flue

Author

Listed:
  • Song, Weiming
  • Zhou, Jianan
  • Li, Yujie
  • Li, Shu
  • Yang, Jian

Abstract

This study proposes a novel approach to effectively solve the problems associated with reusing waste tires by injecting waste tire powder into the converter vaporization cooling flue (CVCF) to obtain gaseous fuels via CO2 gasification using high-temperature waste heat. The gasification behavior was investigated in a CO2 atmosphere using a thermogravimetry (TG)-mass spectrometry (MS) (TG-MS) system. A settling furnace was used to simulate CVCF to investigate the effects of gasification temperatures. The activation energy (E) was calculated using the Flynn-Wall-Ozaw (FWO) and Kissinger-Akahira- Sunose (KAS) methods. The main components in the gas phase were typically CO, CH4, H2, H2O, and C2H6 in a temperature range of 300°C–500 °C. The average activation energy of waste tire decomposition was 144.51 kJ/mol. The increase in temperature and decrease in particle size increased the amount of combustible gas and LHV value. The increase in the CO2/CO ratio decreased the content of residual coke from 12.62% to 11.98%. The lower heating values were determined to range between 8.75 and 10.27 MJ/Nm3. The research preliminarily confirmed the feasibility of injecting waste tire powders into the CVCF to generate gaseous fuels using waste heat via CO2 gasification.

Suggested Citation

  • Song, Weiming & Zhou, Jianan & Li, Yujie & Li, Shu & Yang, Jian, 2021. "Utilization of waste tire powder for gaseous fuel generation via CO2 gasification using waste heat in converter vaporization cooling flue," Renewable Energy, Elsevier, vol. 173(C), pages 283-296.
  • Handle: RePEc:eee:renene:v:173:y:2021:i:c:p:283-296
    DOI: 10.1016/j.renene.2021.03.090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121004468
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.03.090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Rosenfeld, Daniel C. & Böhm, Hans & Lindorfer, Johannes & Lehner, Markus, 2020. "Scenario analysis of implementing a power-to-gas and biomass gasification system in an integrated steel plant: A techno-economic and environmental study," Renewable Energy, Elsevier, vol. 147(P1), pages 1511-1524.
    2. Chen, Jiacong & He, Yao & Liu, Jingyong & Liu, Chao & Xie, Wuming & Kuo, Jiahong & Zhang, Xiaochun & Li, Shoupeng & Liang, Jialin & Sun, Shuiyu & Buyukada, Musa & Evrendilek, Fatih, 2019. "The mixture of sewage sludge and biomass waste as solid biofuels: Process characteristic and environmental implication," Renewable Energy, Elsevier, vol. 139(C), pages 707-717.
    3. Zeaiter, Joseph & Azizi, Fouad & Lameh, Mohammad & Milani, Dia & Ismail, Hamza Y. & Abbas, Ali, 2018. "Waste tire pyrolysis using thermal solar energy: An integrated approach," Renewable Energy, Elsevier, vol. 123(C), pages 44-51.
    4. Roubík, H. & Mazancová, J., 2019. "Small-scale biogas plants in central Vietnam and biogas appliances with a focus on a flue gas analysis of biogas cook stoves," Renewable Energy, Elsevier, vol. 131(C), pages 1138-1145.
    5. Nwachukwu, Chinedu M. & Toffolo, Andrea & Wetterlund, Elisabeth, 2020. "Biomass-based gas use in Swedish iron and steel industry – Supply chain and process integration considerations," Renewable Energy, Elsevier, vol. 146(C), pages 2797-2811.
    6. Caposciutti, Gianluca & Barontini, Federica & Galletti, Chiara & Antonelli, Marco & Tognotti, Leonardo & Desideri, Umberto, 2020. "Woodchip size effect on combustion temperatures and volatiles in a small-scale fixed bed biomass boiler," Renewable Energy, Elsevier, vol. 151(C), pages 161-174.
    7. Subramanian, Avinash S.R. & Gundersen, Truls & Adams, Thomas A., 2020. "Technoeconomic analysis of a waste tire to liquefied synthetic natural gas (SNG) energy system," Energy, Elsevier, vol. 205(C).
    8. Somerville, Michael & Deev, Alexandre, 2020. "The effect of heating rate, particle size and gas flow on the yield of charcoal during the pyrolysis of radiata pine wood," Renewable Energy, Elsevier, vol. 151(C), pages 419-425.
    9. Campbell, William A. & Coller, Amy & Evitts, Richard W., 2019. "Comparing severity of continuous torrefaction for five biomass with a wide range of bulk density and particle size," Renewable Energy, Elsevier, vol. 141(C), pages 964-972.
    10. Xiao, Youqian & Yang, Hongnan & Zheng, Dan & Liu, Yi & Zhao, Cong & Deng, Liangwei, 2021. "Granular activated carbon alleviates the combined stress of ammonia and adverse temperature conditions during dry anaerobic digestion of swine manure," Renewable Energy, Elsevier, vol. 169(C), pages 451-460.
    11. Oliveira, A.S. & Baeza, J.A. & Garcia, D. & Saenz de Miera, B. & Calvo, L. & Rodriguez, J.J. & Gilarranz, M.A., 2020. "Effect of basicity in the aqueous phase reforming of brewery wastewater for H2 production," Renewable Energy, Elsevier, vol. 148(C), pages 889-896.
    12. Kumar, Sanjeev & Noori, Md Tabish & Pandey, K.P., 2019. "Performance characteristics of mode of ballast on energy efficiency indices of agricultural tyre in different terrain condition in controlled soil bin environment," Energy, Elsevier, vol. 182(C), pages 48-56.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Yanshan & Tu, Jun & Wu, Zhiliang & Wang, Tao & Rahman, Md. Maksudur & Shakir, Mohammad & Qing, Mengxia & Chen, Zhijie & Ni, Bing-Jie & Xuan, Yanni & Peng, Zeping & Liu, Liang, 2025. "Thermal characteristics, kinetics mechanism, and sulfur retention of waste tires and goat manure Co-combustion," Energy, Elsevier, vol. 325(C).
    2. Camila Aguilar-Ccuno & Rossibel Churata & Kattia Martínez & Jonathan Almirón, 2025. "Development and Characterization of KOH-Activated Carbons Derived from Zeolite-Catalyzed Pyrolysis of Waste Tires," Sustainability, MDPI, vol. 17(11), pages 1-24, May.
    3. Halil İbrahim Sönmez & Fatih Okumuş & Aykut Safa & Zafer Aydin & Cenk Kaya & Görkem Kökkülünk, 2023. "Renewable energy resources: Combustion and environmental impact of diesel with pyrolytic and biodiesel blends," Energy & Environment, , vol. 34(4), pages 855-872, June.
    4. Song, Weiming & Huang, Yifeng & Chen, Xiaoqing & Jiang, Rui & Li, Yujie & Zhou, Jianan, 2023. "CO2 gasification of dry quenching dust ash catalyzed in situ by soot," Renewable Energy, Elsevier, vol. 211(C), pages 595-606.
    5. Liu, Jingyuan & Zhou, Jianzhao & Ren, Jingzheng, 2025. "Recent advances of energetic valorization technologies for waste tires: A systematic review of thermochemical and integrated processes, challenges, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 218(C).
    6. Özveren, Uğur & Kartal, Furkan & Sezer, Senem & Özdoğan, Z. Sibel, 2022. "Investigation of steam gasification in thermogravimetric analysis by means of evolved gas analysis and machine learning," Energy, Elsevier, vol. 239(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahlström, Johan M. & Walter, Viktor & Göransson, Lisa & Papadokonstantakis, Stavros, 2022. "The role of biomass gasification in the future flexible power system – BECCS or CCU?," Renewable Energy, Elsevier, vol. 190(C), pages 596-605.
    2. Sánchez-González, Alberto & Gómez-Hernández, Jesús, 2020. "Beam-down linear Fresnel reflector: BDLFR," Renewable Energy, Elsevier, vol. 146(C), pages 802-815.
    3. Varbanov, Petar Sabev & Wang, Bohong & Ocłoń, Paweł & Radziszewska-Zielina, Elżbieta & Ma, Ting & Klemeš, Jiří Jaromír & Jia, Xuexiu, 2023. "Efficiency measures for energy supply and use aiming for a clean circular economy," Energy, Elsevier, vol. 283(C).
    4. de Sousa e Silva, Amanda & Lima Moraes dos Santos, Amanda & Cavalcante Malveira, Isabele Clara & Holanda Albano Girão, Bianca & Bezerra dos Santos, André, 2024. "Effect of thermo-alkaline pretreatment and substrate inoculum ratio on methane production from dry and semi-dry anaerobic digestion of swine manure," Renewable Energy, Elsevier, vol. 231(C).
    5. Devaraja, Udya Madhavi Aravindi & Senadheera, Sachini Supunsala & Gunarathne, Duleeka Sandamali, 2022. "Torrefaction severity and performance of Rubberwood and Gliricidia," Renewable Energy, Elsevier, vol. 195(C), pages 1341-1353.
    6. Song, Weiming & Zhou, Jianan & Li, Yujie & Yang, Jian & Cheng, Rijin, 2021. "New technology for producing high-quality combustible gas by high-temperature reaction of dust-removal coke powder in mixed atmosphere," Energy, Elsevier, vol. 233(C).
    7. Kim, Dongin & Han, Jeehoon, 2020. "Techno-economic and climate impact analysis of carbon utilization process for methanol production from blast furnace gas over Cu/ZnO/Al2O3 catalyst," Energy, Elsevier, vol. 198(C).
    8. Santa Margarida Santos & Ana Carolina Assis & Leandro Gomes & Catarina Nobre & Paulo Brito, 2022. "Waste Gasification Technologies: A Brief Overview," Waste, MDPI, vol. 1(1), pages 1-26, December.
    9. Omojola Awogbemi & Daramy Vandi Von Kallon & Kazeem Aderemi Bello, 2022. "Resource Recycling with the Aim of Achieving Zero-Waste Manufacturing," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    10. Li, Ruochen & Meng, Tianxin & Song, Gongxiang & Huang, Dexin & Hu, Song & Jiang, Long & Xu, Jun & Wang, Yi & Su, Sheng & Xiang, Jun, 2024. "A GIS-based assessment of the carbon emission reduction potential of the solar-enhanced char-cycling biomass pyrolysis process in China," Renewable Energy, Elsevier, vol. 237(PA).
    11. Endriss, Felix & Kuptz, Daniel & Wissmann, Dirk & Hartmann, Hans & Dietz, Elke & Kappler, Andreas & Thorwarth, Harald, 2024. "Impacts on X-ray fluorescence measurements for rapid determination of the chemical composition of renewable solid biofuels," Renewable Energy, Elsevier, vol. 222(C).
    12. Sébastien Pissot & Henrik Thunman & Peter Samuelsson & Martin Seemann, 2021. "Production of Negative-Emissions Steel Using a Reducing Gas Derived from DFB Gasification," Energies, MDPI, vol. 14(16), pages 1-32, August.
    13. Mika Pahnila & Aki Koskela & Petri Sulasalmi & Timo Fabritius, 2023. "A Review of Pyrolysis Technologies and the Effect of Process Parameters on Biocarbon Properties," Energies, MDPI, vol. 16(19), pages 1-27, October.
    14. Walmsley, Timothy Gordon & Philipp, Matthias & Picón-Núñez, Martín & Meschede, Henning & Taylor, Matthew Thomas & Schlosser, Florian & Atkins, Martin John, 2023. "Hybrid renewable energy utility systems for industrial sites: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    15. Farhad Beik & Leon Williams & Tim Brown & Stuart T. Wagland, 2021. "Managing Non-Sewered Human Waste Using Thermochemical Waste Treatment Technologies: A Review," Energies, MDPI, vol. 14(22), pages 1-22, November.
    16. Zhenhao Luo & Jihang Wang & Jing Wu & Shengli Zhang & Zhongju Chen & Bin Xie, 2023. "Research on a Hydraulic Cylinder Pressure Control Method for Efficient Traction Operation in Electro-Hydraulic Hitch System of Electric Tractors," Agriculture, MDPI, vol. 13(8), pages 1-18, August.
    17. Moinfar, AbdolMajid & Shahgholi, Gholamhossein & Gilandeh, Yousef Abbaspour & Gundoshmian, Tarahom Mesri, 2020. "The effect of the tractor driving system on its performance and fuel consumption," Energy, Elsevier, vol. 202(C).
    18. Jorge Perpiñán & Manuel Bailera & Luis M. Romeo & Begoña Peña & Valerie Eveloy, 2021. "CO 2 Recycling in the Iron and Steel Industry via Power-to-Gas and Oxy-Fuel Combustion," Energies, MDPI, vol. 14(21), pages 1-15, October.
    19. Hu, Wentao & Nickolaevich, Alekhin Vladimir & Huang, Yue & Hou, Chaoping, 2023. "Design and thermal performance evaluation of a new solar air collector with comprehensive consideration of five factors of phase-change materials and copper foam combination," Applied Energy, Elsevier, vol. 344(C).
    20. Guo, Feihong & Liu, Weizhen & He, Yi & Li, Xinjun & Zhang, Houhu, 2024. "Study on the combustion characteristics and pollutant emissions of cold-pressed pellets and pellet powders in fluidized-bed," Renewable Energy, Elsevier, vol. 220(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:173:y:2021:i:c:p:283-296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.