IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v169y2021icp1058-1065.html
   My bibliography  Save this article

N2 periodic pulsation process intensification to improve ethanol productivity in solid state fermentation of steam-exploded corn stalk

Author

Listed:
  • Wang, Lan
  • Zhou, Yaoyao
  • Liu, Yang
  • Chen, Hongzhang

Abstract

Long fermentation time and high oxygen partial pressure were significant challenges for high ethanol productivity in solid state fermentation (SSF). In this study, the feasibility of N2 periodic pulsation to improve ethanol productivity was investigated. Changes of CO2 concentration and water state distribution in N2 periodic pulsation SSF were examined. A metabolic flux model was developed to understand the effect of N2 periodic pulsation on ethanol production. The results indicated that ethanol productivity of 1.75 g/(L·h) in N2 periodic pulsation group (NPPG) was 34.4% higher than that in control group (CG) within 24 h. The maximum ethanol concentration and yield were 47.52 g/L and 70.80% at 70% moisture content, respectively. The CO2 concentration in NPPG was well below 5000 ppm at 21 h, which was much lower than 38,080 ppm in CG. Metabolic flux analysis revealed that the metabolic flux towards ethanol increased by 25% with the application of N2 periodic pulsation. These results confirmed that N2 periodic pulsation is an effective method for improving ethanol production in solid state fermentation.

Suggested Citation

  • Wang, Lan & Zhou, Yaoyao & Liu, Yang & Chen, Hongzhang, 2021. "N2 periodic pulsation process intensification to improve ethanol productivity in solid state fermentation of steam-exploded corn stalk," Renewable Energy, Elsevier, vol. 169(C), pages 1058-1065.
  • Handle: RePEc:eee:renene:v:169:y:2021:i:c:p:1058-1065
    DOI: 10.1016/j.renene.2021.01.082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121000896
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.01.082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Zhaobao & Ning, Peng & Hu, Lihong & Nie, Qingjuan & Liu, Yiguo & Zhou, Yonghong & Yang, Jianming, 2020. "Efficient ethanol production from paper mulberry pretreated at high solid loading in Fed-nonisothermal-simultaneous saccharification and fermentation," Renewable Energy, Elsevier, vol. 160(C), pages 211-219.
    2. Zhang, Quanguo & Nurhayati, & Cheng, Chieh-Lun & Nagarajan, Dillirani & Chang, Jo-Shu & Hu, Jianjun & Lee, Duu-Jong, 2017. "Carbon capture and utilization of fermentation CO2: Integrated ethanol fermentation and succinic acid production as an efficient platform," Applied Energy, Elsevier, vol. 206(C), pages 364-371.
    3. Mendes, Fabrício Bruno & Ibraim Pires Atala, Daniel & Thoméo, João Cláudio, 2017. "Is cellulase production by solid-state fermentation economically attractive for the second generation ethanol production?," Renewable Energy, Elsevier, vol. 114(PB), pages 525-533.
    4. Chen, Hongzhang & Fu, Xiaoguo, 2016. "Industrial technologies for bioethanol production from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 468-478.
    5. Wirawan, Ferdian & Cheng, Chieh-Lun & Lo, Yung-Chung & Chen, Chun-Yen & Chang, Jo-Shu & Leu, Shao-Yuan & Lee, Duu-Jong, 2020. "Continuous cellulosic bioethanol co-fermentation by immobilized Zymomonas mobilis and suspended Pichia stipitis in a two-stage process," Applied Energy, Elsevier, vol. 266(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taghizadeh-Alisaraei, Ahmad & Motevali, Ali & Ghobadian, Barat, 2019. "Ethanol production from date wastes: Adapted technologies, challenges, and global potential," Renewable Energy, Elsevier, vol. 143(C), pages 1094-1110.
    2. Kirsten M. Davis & Marjorie Rover & Robert C. Brown & Xianglan Bai & Zhiyou Wen & Laura R. Jarboe, 2016. "Recovery and Utilization of Lignin Monomers as Part of the Biorefinery Approach," Energies, MDPI, vol. 9(10), pages 1-28, October.
    3. Qiao, Hui & Han, Mingyang & Ouyang, Shuiping & Zheng, Zhaojuan & Ouyang, Jia, 2022. "An integrated lignocellulose biorefinery process: Two-step sequential treatment with formic acid for efficiently producing ethanol and furfural from corn cobs," Renewable Energy, Elsevier, vol. 191(C), pages 775-784.
    4. Yang, Qiulian & Li, Haitao & Wang, Dong & Zhang, Xiaochun & Guo, Xiangqian & Pu, Shaochen & Guo, Ruixin & Chen, Jianqiu, 2020. "Utilization of chemical wastewater for CO2 emission reduction: Purified terephthalic acid (PTA) wastewater-mediated culture of microalgae for CO2 bio-capture," Applied Energy, Elsevier, vol. 276(C).
    5. Adekunle, Ademola & Orsat, Valerie & Raghavan, Vijaya, 2016. "Lignocellulosic bioethanol: A review and design conceptualization study of production from cassava peels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 518-530.
    6. Adnan, Muflih A. & Azis, Muhammad Mufti & Quddus, Mohammad R. & Hossain, Mohammad M., 2018. "Integrated liquid fuel based chemical looping combustion – parametric study for efficient power generation and CO2 capture," Applied Energy, Elsevier, vol. 228(C), pages 2398-2406.
    7. da Silva, Francinaldo Leite & de Oliveira Campos, Alan & dos Santos, Davi Alves & de Oliveira Júnior, Sérgio Dantas & de Araújo Padilha, Carlos Eduardo & de Sousa Junior, Francisco Caninde & de Macedo, 2018. "Pretreatments of Carnauba (Copernicia prunifera) straw residue for production of cellulolytic enzymes by Trichorderma reesei CCT-2768 by solid state fermentation," Renewable Energy, Elsevier, vol. 116(PA), pages 299-308.
    8. Liu, Zhen & Li, Longfei & Liu, Cheng & Xu, Airong, 2017. "Saccharification of cellulose in the ionic liquids and glucose recovery," Renewable Energy, Elsevier, vol. 106(C), pages 99-102.
    9. He, Dingping & Chen, Xueli & Lu, Minsheng & Shi, Suan & Cao, Limin & Yu, Haitao & Lin, Hao & Jia, Xiwen & Han, Lujia & Xiao, Weihua, 2023. "High-solids saccharification and fermentation of ball-milled corn stover enabling high titer bioethanol production," Renewable Energy, Elsevier, vol. 202(C), pages 336-346.
    10. Simon P. Philbin, 2020. "Critical Analysis and Evaluation of the Technology Pathways for Carbon Capture and Utilization," Clean Technol., MDPI, vol. 2(4), pages 1-21, December.
    11. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    12. Huang, Zhe & Grim, Gary & Schaidle, Joshua & Tao, Ling, 2020. "Using waste CO2 to increase ethanol production from corn ethanol biorefineries: Techno-economic analysis," Applied Energy, Elsevier, vol. 280(C).
    13. Hashemi, Seyed Sajad & Mirmohamadsadeghi, Safoora & Karimi, Keikhosro, 2020. "Biorefinery development based on whole safflower plant," Renewable Energy, Elsevier, vol. 152(C), pages 399-408.
    14. Yee Ho Chai & Suzana Yusup & Wan Nadiah Amalina Kadir & Chung Yiin Wong & Siti Suhailah Rosli & Muhammad Syafiq Hazwan Ruslan & Bridgid Lai Fui Chin & Chung Loong Yiin, 2020. "Valorization of Tropical Biomass Waste by Supercritical Fluid Extraction Technology," Sustainability, MDPI, vol. 13(1), pages 1-24, December.
    15. Usmani, Zeba & Sharma, Minaxi & Awasthi, Abhishek Kumar & Lukk, Tiit & Tuohy, Maria G. & Gong, Liang & Nguyen-Tri, Phuong & Goddard, Alan D. & Bill, Roslyn M. & Nayak, S.Chandra & Gupta, Vijai Kumar, 2021. "Lignocellulosic biorefineries: The current state of challenges and strategies for efficient commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    16. Ryu, Kyung Hwan & Kim, Boeun & Heo, Seongmin, 2022. "Sustainability analysis framework based on global market dynamics: A carbon capture and utilization industry case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    17. del Río, Pablo G. & Domínguez, Elena & Domínguez, Viana D. & Romaní, Aloia & Domingues, Lucília & Garrote, Gil, 2019. "Third generation bioethanol from invasive macroalgae Sargassum muticum using autohydrolysis pretreatment as first step of a biorefinery," Renewable Energy, Elsevier, vol. 141(C), pages 728-735.
    18. Zhang, Yanjuan & Li, Wanhe & Huang, Min & Xu, Xiaofen & Jiang, Min & Hu, Huayu & Huang, Zuqiang & Liang, Jing & Qin, Yuben, 2021. "Non-digesting strategy for efficient bioconversion of cassava to bioethanol via mechanical activation and metal salts pretreatment," Renewable Energy, Elsevier, vol. 169(C), pages 95-103.
    19. Mesa, Leyanis & Martínez, Yenisleidy & Celia de Armas, Ana & González, Erenio, 2020. "Ethanol production from sugarcane straw using different configurations of fermentation and techno-economical evaluation of the best schemes," Renewable Energy, Elsevier, vol. 156(C), pages 377-388.
    20. Sharma, Sumit & Swain, Manas R. & Mishra, Abhishek & Mathur, Anshu S. & Gupta, Ravi P. & Puri, Suresh K. & Ramakumar, S.S.V. & Sharma, Ajay K., 2021. "High solid loading and multiple-fed simultaneous saccharification and co-fermentation (mf-SSCF) of rice straw for high titer ethanol production at low cost," Renewable Energy, Elsevier, vol. 179(C), pages 1915-1924.

    More about this item

    Keywords

    Bioethanol; Steam explosion; Ethanol fermentation; N2 periodic pulsation; Metabolic flux analysis;
    All these keywords.

    JEL classification:

    • N2 - Economic History - - Financial Markets and Institutions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:169:y:2021:i:c:p:1058-1065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.