An exploratory study on using Slippery-Liquid-Infused-Porous-Surface (SLIPS) for wind turbine icing mitigation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2020.10.013
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Tomas Wallenius & Ville Lehtomäki, 2016. "Overview of cold climate wind energy: challenges, solutions, and future needs," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(2), pages 128-135, March.
- Gao, Linyue & Liu, Yang & Zhou, Wenwu & Hu, Hui, 2019. "An experimental study on the aerodynamic performance degradation of a wind turbine blade model induced by ice accretion process," Renewable Energy, Elsevier, vol. 133(C), pages 663-675.
- Peyman Irajizad & Munib Hasnain & Nazanin Farokhnia & Seyed Mohammad Sajadi & Hadi Ghasemi, 2016. "Magnetic slippery extreme icephobic surfaces," Nature Communications, Nature, vol. 7(1), pages 1-7, December.
- Zeng, Jing & Song, Bingliang, 2017. "Research on experiment and numerical simulation of ultrasonic de-icing for wind turbine blades," Renewable Energy, Elsevier, vol. 113(C), pages 706-712.
- Zanon, Alessandro & De Gennaro, Michele & Kühnelt, Helmut, 2018. "Wind energy harnessing of the NREL 5 MW reference wind turbine in icing conditions under different operational strategies," Renewable Energy, Elsevier, vol. 115(C), pages 760-772.
- Kraj, Andrea G. & Bibeau, Eric L., 2010. "Phases of icing on wind turbine blades characterized by ice accumulation," Renewable Energy, Elsevier, vol. 35(5), pages 966-972.
- Tak-Sing Wong & Sung Hoon Kang & Sindy K. Y. Tang & Elizabeth J. Smythe & Benjamin D. Hatton & Alison Grinthal & Joanna Aizenberg, 2011. "Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity," Nature, Nature, vol. 477(7365), pages 443-447, September.
- Zhang, P. & Lv, F.Y., 2015. "A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications," Energy, Elsevier, vol. 82(C), pages 1068-1087.
- Gao, Linyue & Liu, Yang & Ma, Liqun & Hu, Hui, 2019. "A hybrid strategy combining minimized leading-edge electric-heating and superhydro-/ice-phobic surface coating for wind turbine icing mitigation," Renewable Energy, Elsevier, vol. 140(C), pages 943-956.
- Dalili, N. & Edrisy, A. & Carriveau, R., 2009. "A review of surface engineering issues critical to wind turbine performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 428-438, February.
- Habibi, Hossein & Cheng, Liang & Zheng, Haitao & Kappatos, Vassilios & Selcuk, Cem & Gan, Tat-Hean, 2015. "A dual de-icing system for wind turbine blades combining high-power ultrasonic guided waves and low-frequency forced vibrations," Renewable Energy, Elsevier, vol. 83(C), pages 859-870.
- Johnson, Dana L. & Erhardt, Robert J., 2016. "Projected impacts of climate change on wind energy density in the United States," Renewable Energy, Elsevier, vol. 85(C), pages 66-73.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gao, Linyue & Tao, Tao & Liu, Yongqian & Hu, Hui, 2021. "A field study of ice accretion and its effects on the power production of utility-scale wind turbines," Renewable Energy, Elsevier, vol. 167(C), pages 917-928.
- Jiménez, Alfredo Arcos & García Márquez, Fausto Pedro & Moraleda, Victoria Borja & Gómez Muñoz, Carlos Quiterio, 2019. "Linear and nonlinear features and machine learning for wind turbine blade ice detection and diagnosis," Renewable Energy, Elsevier, vol. 132(C), pages 1034-1048.
- Wang, Yibing & Xu, Yuanming & Su, Fei, 2020. "Damage accumulation model of ice detach behavior in ultrasonic de-icing technology," Renewable Energy, Elsevier, vol. 153(C), pages 1396-1405.
- Yan Li & He Shen & Wenfeng Guo, 2021. "Simulation and Experimental Study on the Ultrasonic Micro-Vibration De-Icing Method for Wind Turbine Blades," Energies, MDPI, vol. 14(24), pages 1-15, December.
- Sun, Haoyang & Lin, Guiping & Jin, Haichuan & Bu, Xueqin & Cai, Chujiang & Jia, Qi & Ma, Kuiyuan & Wen, Dongsheng, 2021. "Experimental investigation of surface wettability induced anti-icing characteristics in an ice wind tunnel," Renewable Energy, Elsevier, vol. 179(C), pages 1179-1190.
- Gao, Linyue & Liu, Yang & Ma, Liqun & Hu, Hui, 2019. "A hybrid strategy combining minimized leading-edge electric-heating and superhydro-/ice-phobic surface coating for wind turbine icing mitigation," Renewable Energy, Elsevier, vol. 140(C), pages 943-956.
- Son, Chankyu & Kelly, Mark & Kim, Taeseong, 2021. "Boundary-layer transition model for icing simulations of rotating wind turbine blades," Renewable Energy, Elsevier, vol. 167(C), pages 172-183.
- Stoyanov, D.B. & Nixon, J.D. & Sarlak, H., 2021. "Analysis of derating and anti-icing strategies for wind turbines in cold climates," Applied Energy, Elsevier, vol. 288(C).
- Gao, Linyue & Liu, Yang & Zhou, Wenwu & Hu, Hui, 2019. "An experimental study on the aerodynamic performance degradation of a wind turbine blade model induced by ice accretion process," Renewable Energy, Elsevier, vol. 133(C), pages 663-675.
- Yang, Muchen & Xiao, Zhixiang, 2019. "Distributed roughness induced transition on wind-turbine airfoils simulated by four-equation k-ω-γ-Ar transition model," Renewable Energy, Elsevier, vol. 135(C), pages 1166-1177.
- Yan Li & Ce Sun & Yu Jiang & Fang Feng, 2019. "Scaling Method of the Rotating Blade of a Wind Turbine for a Rime Ice Wind Tunnel Test," Energies, MDPI, vol. 12(4), pages 1-15, February.
- Xiao Yan & Samuel C. Y. Au & Sui Cheong Chan & Ying Lung Chan & Ngai Chun Leung & Wa Yat Wu & Dixon T. Sin & Guanlei Zhao & Casper H. Y. Chung & Mei Mei & Yinchuang Yang & Huihe Qiu & Shuhuai Yao, 2024. "Unraveling the role of vaporization momentum in self-jumping dynamics of freezing supercooled droplets at reduced pressures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Wang, Yibing & Xu, Yuanming & Lei, Yuyong, 2018. "An effect assessment and prediction method of ultrasonic de-icing for composite wind turbine blades," Renewable Energy, Elsevier, vol. 118(C), pages 1015-1023.
- Jiawei Jiang & Yizhou Shen & Yangjiangshan Xu & Zhen Wang & Jie Tao & Senyun Liu & Weilan Liu & Haifeng Chen, 2024. "An energy-free strategy to elevate anti-icing performance of superhydrophobic materials through interfacial airflow manipulation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Sudhakar Gantasala & Narges Tabatabaei & Michel Cervantes & Jan-Olov Aidanpää, 2019. "Numerical Investigation of the Aeroelastic Behavior of a Wind Turbine with Iced Blades," Energies, MDPI, vol. 12(12), pages 1-24, June.
- Wang, Qiang & Yi, Xian & Liu, Yu & Ren, Jinghao & Li, Weihao & Wang, Qiao & Lai, Qingren, 2020. "Simulation and analysis of wind turbine ice accretion under yaw condition via an Improved Multi-Shot Icing Computational Model," Renewable Energy, Elsevier, vol. 162(C), pages 1854-1873.
- Tao, Tao & Liu, Yongqian & Qiao, Yanhui & Gao, Linyue & Lu, Jiaoyang & Zhang, Ce & Wang, Yu, 2021. "Wind turbine blade icing diagnosis using hybrid features and Stacked-XGBoost algorithm," Renewable Energy, Elsevier, vol. 180(C), pages 1004-1013.
- Cheng, Xu & Shi, Fan & Liu, Yongping & Liu, Xiufeng & Huang, Lizhen, 2022. "Wind turbine blade icing detection: a federated learning approach," Energy, Elsevier, vol. 254(PC).
- Jianqiang Zhang & Xuejiao Wang & Zhaoyue Wang & Shangfa Pan & Bo Yi & Liqing Ai & Jun Gao & Frieder Mugele & Xi Yao, 2021. "Wetting ridge assisted programmed magnetic actuation of droplets on ferrofluid-infused surface," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
- Liu, W.Y. & Zhang, W.H. & Han, J.G. & Wang, G.F., 2012. "A new wind turbine fault diagnosis method based on the local mean decomposition," Renewable Energy, Elsevier, vol. 48(C), pages 411-415.
More about this item
Keywords
Wind turbine icing; SLIPS; Impact ice accretion; Icephobic coatings; Anti-/de-icing;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:162:y:2020:i:c:p:2344-2360. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.