IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms13395.html
   My bibliography  Save this article

Magnetic slippery extreme icephobic surfaces

Author

Listed:
  • Peyman Irajizad

    (University of Houston)

  • Munib Hasnain

    (University of Houston)

  • Nazanin Farokhnia

    (University of Houston)

  • Seyed Mohammad Sajadi

    (University of Houston)

  • Hadi Ghasemi

    (University of Houston)

Abstract

Anti-icing surfaces have a critical footprint on daily lives of humans ranging from transportation systems and infrastructure to energy systems, but creation of these surfaces for low temperatures remains elusive. Non-wetting surfaces and liquid-infused surfaces have inspired routes for the development of icephobic surfaces. However, high freezing temperature, high ice adhesion strength, and high cost have restricted their practical applications. Here we report new magnetic slippery surfaces outperforming state-of-the-art icephobic surfaces with a ice formation temperature of −34 °C, 2–3 orders of magnitude higher delay time in ice formation, extremely low ice adhesion strength (≈2 Pa) and stability in shear flows up to Reynolds number of 105. In these surfaces, we exploit the magnetic volumetric force to exclude the role of solid–liquid interface in ice formation. We show that these inexpensive surfaces are universal and can be applied to all types of solids (no required micro/nano structuring) with no compromise to their unprecedented properties.

Suggested Citation

  • Peyman Irajizad & Munib Hasnain & Nazanin Farokhnia & Seyed Mohammad Sajadi & Hadi Ghasemi, 2016. "Magnetic slippery extreme icephobic surfaces," Nature Communications, Nature, vol. 7(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13395
    DOI: 10.1038/ncomms13395
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms13395
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms13395?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alireza Hakimian & Mohammadjavad Mohebinia & Masoumeh Nazari & Ali Davoodabadi & Sina Nazifi & Zixu Huang & Jiming Bao & Hadi Ghasemi, 2021. "Freezing of few nanometers water droplets," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Ma, Liqun & Zhang, Zichen & Gao, Linyue & Liu, Yang & Hu, Hui, 2020. "An exploratory study on using Slippery-Liquid-Infused-Porous-Surface (SLIPS) for wind turbine icing mitigation," Renewable Energy, Elsevier, vol. 162(C), pages 2344-2360.
    3. Jianqiang Zhang & Xuejiao Wang & Zhaoyue Wang & Shangfa Pan & Bo Yi & Liqing Ai & Jun Gao & Frieder Mugele & Xi Yao, 2021. "Wetting ridge assisted programmed magnetic actuation of droplets on ferrofluid-infused surface," Nature Communications, Nature, vol. 12(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.