IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v157y2020icp1222-1232.html
   My bibliography  Save this article

Novel models to estimate hourly diffuse radiation fraction for global radiation based on weather type classification

Author

Listed:
  • Li, Fen
  • Lin, Yilun
  • Guo, Jianping
  • Wang, Yue
  • Mao, Ling
  • Cui, Yang
  • Bai, Yongqing

Abstract

The diffuse radiation is well recognized as a key variable in solar energy assessment, albeit with sorely lacking ground-based measurements. Here, we proposed two novel models to estimate hourly diffuse radiation using the typical meteorological year’s radiation data in Beijing as training samples. Model 1 was a combination of four classical models, including Liu&Jordan, Orgill&Hollands, Erbs and Reindl, in which the weight or coefficient was determined by weather types that were derived from clearness index. In Model 2, the weather type classification was refined by total cloud cover, and the principal component analysis (PCA) was further applied to determine the major meteorological variables for each weather type as model’s input, along with linear fitting. Using sub-typical year’s radiation data as testing samples, the proposed models showed strong extrapolation ability with three statistical metrics: lower mean absolute percentage error and normalized root mean square error but relatively higher correlation coefficient, compared with other models. Finally, these models were verified by the observations in Wuhan. The results indicated that weather type classification and PCA effectively improved model’s performance by eliminating the collinearity between meteorological and environmental variables. Furthermore, both models performed better than any single classical model, irrespective of large-scale weather patterns.

Suggested Citation

  • Li, Fen & Lin, Yilun & Guo, Jianping & Wang, Yue & Mao, Ling & Cui, Yang & Bai, Yongqing, 2020. "Novel models to estimate hourly diffuse radiation fraction for global radiation based on weather type classification," Renewable Energy, Elsevier, vol. 157(C), pages 1222-1232.
  • Handle: RePEc:eee:renene:v:157:y:2020:i:c:p:1222-1232
    DOI: 10.1016/j.renene.2020.05.080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120307771
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.05.080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Yongxiu & Pang, Yuexia & Zhang, Qi & Jiao, Zhe & Chen, Qian, 2018. "Comprehensive evaluation of regional clean energy development levels based on principal component analysis and rough set theory," Renewable Energy, Elsevier, vol. 122(C), pages 643-653.
    2. Yao, Wanxiang & Zhang, Chunxiao & Hao, Haodong & Wang, Xiao & Li, Xianli, 2018. "A support vector machine approach to estimate global solar radiation with the influence of fog and haze," Renewable Energy, Elsevier, vol. 128(PA), pages 155-162.
    3. Koo, Choongwan & Li, Wenzhuo & Cha, Seung Hyun & Zhang, Shaojie, 2019. "A novel estimation approach for the solar radiation potential with its complex spatial pattern via machine-learning techniques," Renewable Energy, Elsevier, vol. 133(C), pages 575-592.
    4. Wang, Yifei & Ma, Xiandong & Joyce, Malcolm J., 2016. "Reducing sensor complexity for monitoring wind turbine performance using principal component analysis," Renewable Energy, Elsevier, vol. 97(C), pages 444-456.
    5. Chan, A.L.S., 2016. "Generation of typical meteorological years using genetic algorithm for different energy systems," Renewable Energy, Elsevier, vol. 90(C), pages 1-13.
    6. Kuo, Chia-Wei & Chang, Wen-Chey & Chang, Keh-Chin, 2014. "Modeling the hourly solar diffuse fraction in Taiwan," Renewable Energy, Elsevier, vol. 66(C), pages 56-61.
    7. Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Ma, Xin & Bai, Hua, 2019. "Evaluation and development of empirical models for estimating daily and monthly mean daily diffuse horizontal solar radiation for different climatic regions of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 168-186.
    8. Bart Sweerts & Stefan Pfenninger & Su Yang & Doris Folini & Bob Zwaan & Martin Wild, 2019. "Estimation of losses in solar energy production from air pollution in China since 1960 using surface radiation data," Nature Energy, Nature, vol. 4(8), pages 657-663, August.
    9. Jacovides, C.P. & Tymvios, F.S. & Assimakopoulos, V.D. & Kaltsounides, N.A., 2006. "Comparative study of various correlations in estimating hourly diffuse fraction of global solar radiation," Renewable Energy, Elsevier, vol. 31(15), pages 2492-2504.
    10. Bakirci, Kadir, 2015. "Models for the estimation of diffuse solar radiation for typical cities in Turkey," Energy, Elsevier, vol. 82(C), pages 827-838.
    11. Demain, Colienne & Journée, Michel & Bertrand, Cédric, 2013. "Evaluation of different models to estimate the global solar radiation on inclined surfaces," Renewable Energy, Elsevier, vol. 50(C), pages 710-721.
    12. Boland, John & Ridley, Barbara & Brown, Bruce, 2008. "Models of diffuse solar radiation," Renewable Energy, Elsevier, vol. 33(4), pages 575-584.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Kaili & Zhang, Xiaojing & Xie, Jingchao & Hao, Ziyang & Xiao, Guofeng & Liu, Jiaping, 2023. "Modeling hourly solar diffuse fraction on a horizontal surface based on sky conditions clustering," Energy, Elsevier, vol. 272(C).
    2. Hassan, Muhammed A. & Abubakr, Mohamed & Khalil, Adel, 2021. "A profile-free non-parametric approach towards generation of synthetic hourly global solar irradiation data from daily totals," Renewable Energy, Elsevier, vol. 167(C), pages 613-628.
    3. Giambattista Gruosso & Luca Daniel & Paolo Maffezzoni, 2022. "Piece-Wise Linear (PWL) Probabilistic Analysis of Power Grid with High Penetration PV Integration," Energies, MDPI, vol. 15(13), pages 1-15, June.
    4. Yazdani, Hamed & Yaghoubi, Mahmood, 2021. "Techno-economic study of photovoltaic systems performance in Shiraz, Iran," Renewable Energy, Elsevier, vol. 172(C), pages 251-262.
    5. Starke, Allan R. & Lemos, Leonardo F.L. & Barni, Cristian M. & Machado, Rubinei D. & Cardemil, José M. & Boland, John & Colle, Sergio, 2021. "Assessing one-minute diffuse fraction models based on worldwide climate features," Renewable Energy, Elsevier, vol. 177(C), pages 700-714.
    6. Wang, Nannan & Yue, Zijian & Liu, Yaolin & Liu, Yanfang, 2024. "Machine learning potentials for global multi-timescale diffuse irradiance estimation: Synthesizing ground observations, time-series, and environmental features," Energy, Elsevier, vol. 306(C).
    7. Hassan, Muhammed A. & Akoush, Bassem M. & Abubakr, Mohamed & Campana, Pietro Elia & Khalil, Adel, 2021. "High-resolution estimates of diffuse fraction based on dynamic definitions of sky conditions," Renewable Energy, Elsevier, vol. 169(C), pages 641-659.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seyed Abbas Mousavi Maleki & H. Hizam & Chandima Gomes, 2017. "Estimation of Hourly, Daily and Monthly Global Solar Radiation on Inclined Surfaces: Models Re-Visited," Energies, MDPI, vol. 10(1), pages 1-28, January.
    2. Liu, Peirong & Tong, Xiaojuan & Zhang, Jinsong & Meng, Ping & Li, Jun & Zhang, Jingru, 2020. "Estimation of half-hourly diffuse solar radiation over a mixed plantation in north China," Renewable Energy, Elsevier, vol. 149(C), pages 1360-1369.
    3. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparative analysis of diffuse solar radiation models based on sky-clearness index and sunshine period for humid-subtropical climatic region of India: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 329-355.
    4. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparison of empirical models to estimate monthly mean diffuse solar radiation from measured data: Case study for humid-subtropical climatic region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1326-1342.
    5. Bakirci, Kadir, 2021. "Prediction of diffuse radiation in solar energy applications: Turkey case study and compare with satellite data," Energy, Elsevier, vol. 237(C).
    6. Jamil, Basharat & Akhtar, Naiem, 2017. "Estimation of diffuse solar radiation in humid-subtropical climatic region of India: Comparison of diffuse fraction and diffusion coefficient models," Energy, Elsevier, vol. 131(C), pages 149-164.
    7. Huang, Kuo-Tsang, 2020. "Identifying a suitable hourly solar diffuse fraction model to generate the typical meteorological year for building energy simulation application," Renewable Energy, Elsevier, vol. 157(C), pages 1102-1115.
    8. Furlan, Claudia & de Oliveira, Amauri Pereira & Soares, Jacyra & Codato, Georgia & Escobedo, João Francisco, 2012. "The role of clouds in improving the regression model for hourly values of diffuse solar radiation," Applied Energy, Elsevier, vol. 92(C), pages 240-254.
    9. Vincenzo Costanzo & Gianpiero Evola & Marco Infantone & Luigi Marletta, 2020. "Updated Typical Weather Years for the Energy Simulation of Buildings in Mediterranean Climate. A Case Study for Sicily," Energies, MDPI, vol. 13(16), pages 1-24, August.
    10. Alam, Shah & Kaushik, S.C. & Garg, S.N., 2009. "Assessment of diffuse solar energy under general sky condition using artificial neural network," Applied Energy, Elsevier, vol. 86(4), pages 554-564, April.
    11. Kuo, Chia-Wei & Chang, Wen-Chey & Chang, Keh-Chin, 2014. "Modeling the hourly solar diffuse fraction in Taiwan," Renewable Energy, Elsevier, vol. 66(C), pages 56-61.
    12. Miroslav Rimar & Marcel Fedak & Andrii Kulikov & Olha Kulikova & Martin Lopusniak, 2022. "Analysis and CFD Modeling of Thermal Collectors with a Tracker System," Energies, MDPI, vol. 15(18), pages 1-28, September.
    13. Jacovides, C.P. & Boland, J. & Asimakopoulos, D.N. & Kaltsounides, N.A., 2010. "Comparing diffuse radiation models with one predictor for partitioning incident PAR radiation into its diffuse component in the eastern Mediterranean basin," Renewable Energy, Elsevier, vol. 35(8), pages 1820-1827.
    14. Marques Filho, Edson P. & Oliveira, Amauri P. & Vita, Willian A. & Mesquita, Francisco L.L. & Codato, Georgia & Escobedo, João F. & Cassol, Mariana & França, José Ricardo A., 2016. "Global, diffuse and direct solar radiation at the surface in the city of Rio de Janeiro: Observational characterization and empirical modeling," Renewable Energy, Elsevier, vol. 91(C), pages 64-74.
    15. Moretón, R. & Lorenzo, E. & Pinto, A. & Muñoz, J. & Narvarte, L., 2017. "From broadband horizontal to effective in-plane irradiation: A review of modelling and derived uncertainty for PV yield prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 886-903.
    16. Karakoti, Indira & Pande, Bimal & Pandey, Kavita, 2011. "Evaluation of different diffuse radiation models for Indian stations and predicting the best fit model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2378-2384, June.
    17. Abreu, Edgar F.M. & Canhoto, Paulo & Costa, Maria João, 2019. "Prediction of diffuse horizontal irradiance using a new climate zone model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 28-42.
    18. El-Sebaii, A.A. & Al-Hazmi, F.S. & Al-Ghamdi, A.A. & Yaghmour, S.J., 2010. "Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia," Applied Energy, Elsevier, vol. 87(2), pages 568-576, February.
    19. Jiang, Hou & Lu, Ning & Huang, Guanghui & Yao, Ling & Qin, Jun & Liu, Hengzi, 2020. "Spatial scale effects on retrieval accuracy of surface solar radiation using satellite data," Applied Energy, Elsevier, vol. 270(C).
    20. Feng, Yu & Hao, Weiping & Li, Haoru & Cui, Ningbo & Gong, Daozhi & Gao, Lili, 2020. "Machine learning models to quantify and map daily global solar radiation and photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:157:y:2020:i:c:p:1222-1232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.