IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v149y2020icp940-950.html

Lithium nitrate purity influence assessment in ternary molten salts as thermal energy storage material for CSP plants

Author

Listed:
  • Henríquez, Mauro
  • Guerreiro, Luis
  • Fernández, Ángel G.
  • Fuentealba, Edward

Abstract

The addition of lithium nitrate is assumed to improve the performance of molten salts, extending the work temperature range. This paper presents an evaluation of the influence of different degrees of purity of LiNO3, in a ternary mixture with composition 30 wt%LiNO3 + 13 wt%NaNO3 + 57 wt% KNO3 including a Chilean mixture obtained from the Atacama Desert brines. In addition, the use of synthetic lithium nitrate obtained from the chemical synthesis using Li2CO3 and HNO3, was incorporated in the comparison. The melting point results of the 30 wt% LiNO3 + 13 wt% NaNO3 + 57 wt% KNO3 mixture for different purities (128 °C, 124 °C), show a reduction of 92–96 °C with respect to the 223 °C of the solar salt and thermal stability results show maximum temperature are around 594 and 596 °C, which means that this mixture could work at maximum operating temperatures similar to those of solar salt. Finally, it was also determined that for the use of the proposed ternary mixture would mean a reduction of 35% in the volume of inventory with respect to solar salt since the proposed ternary salt presents an improvement about 14–21% in the heat capacity.

Suggested Citation

  • Henríquez, Mauro & Guerreiro, Luis & Fernández, Ángel G. & Fuentealba, Edward, 2020. "Lithium nitrate purity influence assessment in ternary molten salts as thermal energy storage material for CSP plants," Renewable Energy, Elsevier, vol. 149(C), pages 940-950.
  • Handle: RePEc:eee:renene:v:149:y:2020:i:c:p:940-950
    DOI: 10.1016/j.renene.2019.10.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119315666
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.10.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Gustavo Cáceres & Macarena Montané & Shahriyar Nasirov & Raúl O’Ryan, 2016. "Review of Thermal Materials for CSP Plants and LCOE Evaluation for Performance Improvement using Chilean Strategic Minerals: Lithium Salts and Copper Foams," Sustainability, MDPI, vol. 8(2), pages 1-20, January.
    2. Cabeza, Luisa F. & Gutierrez, Andrea & Barreneche, Camila & Ushak, Svetlana & Fernández, Ángel G. & Inés Fernádez, A. & Grágeda, Mario, 2015. "Lithium in thermal energy storage: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1106-1112.
    3. Kenisarin, Murat M. & Kenisarina, Kamola M., 2012. "Form-stable phase change materials for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1999-2040.
    4. Medrano, Marc & Gil, Antoni & Martorell, Ingrid & Potau, Xavi & Cabeza, Luisa F., 2010. "State of the art on high-temperature thermal energy storage for power generation. Part 2--Case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 56-72, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kondaiah, P. & Pitchumani, R., 2023. "Progress and opportunities in corrosion mitigation in heat transfer fluids for next-generation concentrating solar power," Renewable Energy, Elsevier, vol. 205(C), pages 956-991.
    2. Na Li & Yang Wang & Qi Liu & Hao Peng, 2022. "Evaluation of Thermal-Physical Properties of Novel Multicomponent Molten Nitrate Salts for Heat Transfer and Storage," Energies, MDPI, vol. 15(18), pages 1-17, September.
    3. Han, Yan & Zhang, Cancan & Wu, Yuting & Lu, Yuanwei, 2021. "Investigation on thermal performance of quaternary nitrate-nitrite mixed salt and solar salt under thermal shock condition," Renewable Energy, Elsevier, vol. 175(C), pages 1041-1051.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández, Ángel G. & Gomez-Vidal, Judith C., 2017. "Thermophysical properties of low cost lithium nitrate salts produced in northern Chile for thermal energy storage," Renewable Energy, Elsevier, vol. 101(C), pages 120-125.
    2. Ge, Haoshan & Li, Haiyan & Mei, Shengfu & Liu, Jing, 2013. "Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 331-346.
    3. Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
    4. Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Castelain, Cathy, 2019. "Integration of a thermochemical energy storage system in a Rankine cycle driven by concentrating solar power: Energy and exergy analyses," Energy, Elsevier, vol. 167(C), pages 498-510.
    5. Kenisarin, Murat & Mahkamov, Khamid, 2016. "Passive thermal control in residential buildings using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 371-398.
    6. Gil, Antoni & Barreneche, Camila & Moreno, Pere & Solé, Cristian & Inés Fernández, A. & Cabeza, Luisa F., 2013. "Thermal behaviour of d-mannitol when used as PCM: Comparison of results obtained by DSC and in a thermal energy storage unit at pilot plant scale," Applied Energy, Elsevier, vol. 111(C), pages 1107-1113.
    7. Liu, Ming & Saman, Wasim & Bruno, Frank, 2012. "Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2118-2132.
    8. Li, Chaoen & Yu, Hang & Song, Yuan & Liang, Hao & Yan, Xun, 2019. "Preparation and characterization of PMMA/TiO2 hybrid shell microencapsulated PCMs for thermal energy storage," Energy, Elsevier, vol. 167(C), pages 1031-1039.
    9. González-Roubaud, Edouard & Pérez-Osorio, David & Prieto, Cristina, 2017. "Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 133-148.
    10. Yang, Haiyue & Wang, Yazhou & Yu, Qianqian & Cao, Guoliang & Yang, Rue & Ke, Jiaona & Di, Xin & Liu, Feng & Zhang, Wenbo & Wang, Chengyu, 2018. "Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage," Applied Energy, Elsevier, vol. 212(C), pages 455-464.
    11. Muñoz-Sánchez, Belén & Nieto-Maestre, Javier & Iparraguirre-Torres, Iñigo & García-Romero, Ana & Sala-Lizarraga, Jose M., 2018. "Molten salt-based nanofluids as efficient heat transfer and storage materials at high temperatures. An overview of the literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3924-3945.
    12. Xu, Yang & Li, Ming-Jia & Zheng, Zhang-Jing & Xue, Xiao-Dai, 2018. "Melting performance enhancement of phase change material by a limited amount of metal foam: Configurational optimization and economic assessment," Applied Energy, Elsevier, vol. 212(C), pages 868-880.
    13. Xu, Yang & Ren, Qinlong & Zheng, Zhang-Jing & He, Ya-Ling, 2017. "Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media," Applied Energy, Elsevier, vol. 193(C), pages 84-95.
    14. Fukahori, Ryo & Nomura, Takahiro & Zhu, Chunyu & Sheng, Nan & Okinaka, Noriyuki & Akiyama, Tomohiro, 2016. "Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage," Applied Energy, Elsevier, vol. 170(C), pages 324-328.
    15. Palacios, A. & Barreneche, C. & Navarro, M.E. & Ding, Y., 2020. "Thermal energy storage technologies for concentrated solar power – A review from a materials perspective," Renewable Energy, Elsevier, vol. 156(C), pages 1244-1265.
    16. Lourdes A. Barcia & Rogelio Peón Menéndez & Juan Á. Martínez Esteban & Miguel A. José Prieto & Juan A. Martín Ramos & F. Javier De Cos Juez & Antonio Nevado Reviriego, 2015. "Dynamic Modeling of the Solar Field in Parabolic Trough Solar Power Plants," Energies, MDPI, vol. 8(12), pages 1-17, November.
    17. Bruch, A. & Molina, S. & Esence, T. & Fourmigué, J.F. & Couturier, R., 2017. "Experimental investigation of cycling behaviour of pilot-scale thermal oil packed-bed thermal storage system," Renewable Energy, Elsevier, vol. 103(C), pages 277-285.
    18. Santhanam, S. & Heddrich, M.P. & Riedel, M. & Friedrich, K.A., 2017. "Theoretical and experimental study of Reversible Solid Oxide Cell (r-SOC) systems for energy storage," Energy, Elsevier, vol. 141(C), pages 202-214.
    19. Gao, Yahui & Ming, Tingzhen & Xiong, Hanbing & Zhou, Jiyuan & Li, Wenyu & Yuan, Xitong & Lin, Wenting & Wu, Yongjia, 2025. "Energy saving performance of dual-mode adaptive wall with phase change material and dynamic louver," Energy, Elsevier, vol. 332(C).
    20. Zeng, Kuo & Gao, Junjie & Lu, Yongwen & Zuo, Hongyang & Chi, Bowen & Fang, Zheyu & Li, Jun & Xu, Huaqian & Li, Beiyang & Yang, Haiping & Chen, Hanping, 2024. "Comprehensive enhancement of melting-solidifying process in latent heat storage based on eccentric fin-foam combination," Energy, Elsevier, vol. 313(C).

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:149:y:2020:i:c:p:940-950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.