IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p1070-1081.html
   My bibliography  Save this article

Photoactivated Fe(III)/Fe(II)/WO3–Pd fuel cell for electricity generation using synthetic and real effluents under visible light

Author

Listed:
  • Russo, Danilo
  • Muscetta, Marica
  • Clarizia, Laura
  • Di Somma, Ilaria
  • Garlisi, Corrado
  • Marotta, Raffaele
  • Palmisano, Giovanni
  • Andreozzi, Roberto

Abstract

Solar energy exploitation is one of the most challenging applications for sustainable energy production. In this work a photoactivated fuel cell was developed, using visible light and the Fe(III)/Fe(II) redox couple for the simultaneous production of electrical energy and oxidation of polluting organics (alcohols) contained in synthetic and real wastewaters. WO3 was selected as a cheap and environmentally friendly photocatalyst more efficient than TiO2 (i) under visible light irradiation and (ii) in the presence of in-situ photodeposited Pd. Pd photodeposition was found to reduce the band gap of bare WO3, thus increasing visible light capture and limiting the occurrence of photogenerated hole/electron recombination. Higher photocatalytic performances were recorded over WO3–Pd compared to TiO2 and bare WO3, despite the low BET superficial area of WO3–Pd (2.34 m2 g−1). Optimal conditions were identified at pH = 2.0 with 2% w/w Pd load. The results also evidenced the influence of the selected sacrificial organics and water matrices. A quantum yield of 84.89% and an energy efficiency of 4.15% were the best results achieved so far for the proposed system. The present photoelectrochemical cell offers a very promising system for electrical energy production by using wastewater from wine manufacturing industry and solar light radiation.

Suggested Citation

  • Russo, Danilo & Muscetta, Marica & Clarizia, Laura & Di Somma, Ilaria & Garlisi, Corrado & Marotta, Raffaele & Palmisano, Giovanni & Andreozzi, Roberto, 2020. "Photoactivated Fe(III)/Fe(II)/WO3–Pd fuel cell for electricity generation using synthetic and real effluents under visible light," Renewable Energy, Elsevier, vol. 147(P1), pages 1070-1081.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1070-1081
    DOI: 10.1016/j.renene.2019.09.080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119314119
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.09.080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rodríguez-Caballero, Carlos Vladimir & Ventosa-Santaulària, Daniel, 2017. "Energy-growth long-term relationship under structural breaks. Evidence from Canada, 17 Latin American economies and the USA," Energy Economics, Elsevier, vol. 61(C), pages 121-134.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruns, Stephan B. & König, Johannes & Stern, David I., 2019. "Replication and robustness analysis of ‘energy and economic growth in the USA: A multivariate approach’," Energy Economics, Elsevier, vol. 82(C), pages 100-113.
    2. Mehmet Balcilar & Zeynel Abidin Ozdemir & Huseyin Ozdemir & Muhammad Shahbaz, 2018. "Carbon dioxide emissions, energy consumption and economic growth: The historical decomposition evidence from G-7 countries," Working Papers 15-41, Eastern Mediterranean University, Department of Economics.
    3. Benjamin Leiva & Mar Rubio-Varas, 2020. "The Energy and Gross Domestic Product Causality Nexus in Latin America 1900-2010," International Journal of Energy Economics and Policy, Econjournals, vol. 10(1), pages 423-435.
    4. Leiva, Benjamin & Liu, Zhongyuan, 2019. "Energy and economic growth in the USA two decades later: Replication and reanalysis," Energy Economics, Elsevier, vol. 82(C), pages 89-99.
    5. Abdullah Emre ÇAĞLAR & Çiğdem DEMİR, 2018. "Yenilenebilir Kaynaklı Enerji Tüketimi ve Ekonomik Büyüme İlişkisi: Avrupa Birliğine Ait Yeni Bulgular," EKOIST Journal of Econometrics and Statistics, Istanbul University, Faculty of Economics, vol. 14(28), pages 9-30, December.
    6. Mehmet Balcilar & Zeynel Abidin Ozdemir & Bedriye Tunçsiper & Huseyin Ozdemir & Muhammad Shahbaz, 2020. "On the nexus among carbon dioxide emissions, energy consumption and economic growth in G-7 countries: new insights from the historical decomposition approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 8097-8134, December.
    7. Carlos Vladimir Rodriguez-Caballero & Daniel Ventosa-Santaularia, 2014. "Granger Causality and Unit Roots," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 3(1), pages 1-7.
    8. Salisu, Afees A. & Ogbonna, Ahamuefula E., 2019. "Another look at the energy-growth nexus: New insights from MIDAS regressions," Energy, Elsevier, vol. 174(C), pages 69-84.
    9. Shahbaz, Muhammad & Zakaria, Muhammad & Shahzad, Syed Jawad Hussain & Mahalik, Mantu Kumar, 2018. "The energy consumption and economic growth nexus in top ten energy-consuming countries: Fresh evidence from using the quantile-on-quantile approach," Energy Economics, Elsevier, vol. 71(C), pages 282-301.
    10. Jacek Brożyna & Grzegorz Mentel & Eva Ivanová & Gennadii Sorokin, 2019. "Classification of Renewable Sources of Electricity in the Context of Sustainable Development of the New EU Member States," Energies, MDPI, vol. 12(12), pages 1-22, June.
    11. Inayatullah Jan & Shazia Farhat Durrani & Himayatullah Khan, 2021. "Does renewable energy efficiently spur economic growth? Evidence from Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 373-387, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1070-1081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.