IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v143y2019icp915-921.html
   My bibliography  Save this article

A comparative thermodynamic analysis of isothermal and non-isothermal CeO2-based solar thermochemical cycle with methane-driven reduction

Author

Listed:
  • Ma, Tianzeng
  • Wang, Lei
  • Chang, Chun
  • Akhatov, Jasurjon S.
  • Fu, Mingkai
  • Li, Xin

Abstract

Induced by promising hydrogen production of CeO2-based solar thermochemical cycle and evident temperature decreasing effect of methane reduction, a moderately high-temperature solar thermochemical ceria-methane cycle is investigated thermodynamically. In this paper, isothermal and non-isothermal solar-to-fuel efficiencies (ηsolar-to-fuel) under different temperatures and reactant ratios are compared carefully. The calculated results indicate that the condition of CH4:CeO2 = 0.5 is favorable for oxygen release, fuel selectivity and methane conversion. The introduction of methane could increase the maximum yield of H2, and more solar energy could be converted to chemical energy as the increase of nH2O:nCeO2. nH2O:nCeO2 = 0.5, Tred = 1400 K and Toxi = 750 K are suggested for the maximum non-isothermal ηsolar-to-fuel of 0.35, which is larger than the maximum isothermal ηsolar-to-fuel of 0.24. The result shows that non-isothermal solar thermochemical ceria-methane cycle is more feasible for fuel production.

Suggested Citation

  • Ma, Tianzeng & Wang, Lei & Chang, Chun & Akhatov, Jasurjon S. & Fu, Mingkai & Li, Xin, 2019. "A comparative thermodynamic analysis of isothermal and non-isothermal CeO2-based solar thermochemical cycle with methane-driven reduction," Renewable Energy, Elsevier, vol. 143(C), pages 915-921.
  • Handle: RePEc:eee:renene:v:143:y:2019:i:c:p:915-921
    DOI: 10.1016/j.renene.2019.05.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119307049
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.05.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fosheim, Jesse R. & Hathaway, Brandon J. & Davidson, Jane H., 2019. "High efficiency solar chemical-looping methane reforming with ceria in a fixed-bed reactor," Energy, Elsevier, vol. 169(C), pages 597-612.
    2. Christopher L. Muhich & Brian D. Ehrhart & Ibraheam Al-Shankiti & Barbara J. Ward & Charles B. Musgrave & Alan W. Weimer, 2016. "A review and perspective of efficient hydrogen generation via solar thermal water splitting," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(3), pages 261-287, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Ke & Liu, Xianglei & Jiang, Zhixing & Zheng, Hangbin & Song, Chao & Wang, Xinrui & Tian, Cheng & Dang, Chunzhuo & Sun, Nan & Xuan, Yimin, 2022. "Direct solar thermochemical CO2 splitting based on Ca- and Al- doped SmMnO3 perovskites: Ultrahigh CO yield within small temperature swing," Renewable Energy, Elsevier, vol. 194(C), pages 482-494.
    2. Mao, Yanpeng & Gao, Yibo & Dong, Wei & Wu, Han & Song, Zhanlong & Zhao, Xiqiang & Sun, Jing & Wang, Wenlong, 2020. "Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide – A review," Applied Energy, Elsevier, vol. 267(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hasan, Md. Mahedi & Islam, Tamanna & Ratan, Zubair Ahmed & Shaikh, M. Nasiruzzaman & Karim, Mohammad Rezaul & Rahman, Mohammad Mominur & Alharbi, Hamad F. & Uddin, Jamal & Aziz, Md. Abdul & Ahammad, A, 2021. "Ni and Co oxide water oxidation electrocatalysts: Effect of thermal treatment on catalytic activity and surface morphology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Mohsen Fallah Vostakola & Babak Salamatinia & Bahman Amini Horri, 2022. "A Review on Recent Progress in the Integrated Green Hydrogen Production Processes," Energies, MDPI, vol. 15(3), pages 1-41, February.
    3. Wang, Wanrong & Ma, Yingjie & Maroufmashat, Azadeh & Zhang, Nan & Li, Jie & Xiao, Xin, 2022. "Optimal design of large-scale solar-aided hydrogen production process via machine learning based optimisation framework," Applied Energy, Elsevier, vol. 305(C).
    4. Stéphane Abanades, 2022. "Redox Cycles, Active Materials, and Reactors Applied to Water and Carbon Dioxide Splitting for Solar Thermochemical Fuel Production: A Review," Energies, MDPI, vol. 15(19), pages 1-28, September.
    5. Zhu, Xuancan & Shi, Yixiang & Li, Shuang & Cai, Ningsheng, 2018. "Two-train elevated-temperature pressure swing adsorption for high-purity hydrogen production," Applied Energy, Elsevier, vol. 229(C), pages 1061-1071.
    6. Lidor, A. & Fend, T. & Roeb, M. & Sattler, C., 2021. "High performance solar receiver–reactor for hydrogen generation," Renewable Energy, Elsevier, vol. 179(C), pages 1217-1232.
    7. Tang, Xin-Yuan & Zhang, Kai-Ran & Yang, Wei-Wei & Dou, Pei-Yuan, 2023. "Integrated design of solar concentrator and thermochemical reactor guided by optimal solar radiation distribution," Energy, Elsevier, vol. 263(PB).
    8. Abdin, Zainul & Zafaranloo, Ali & Rafiee, Ahmad & Mérida, Walter & Lipiński, Wojciech & Khalilpour, Kaveh R., 2020. "Hydrogen as an energy vector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    9. Zhou, Dengji & Yan, Siyun & Huang, Dawen & Shao, Tiemin & Xiao, Wang & Hao, Jiarui & Wang, Chen & Yu, Tianqi, 2022. "Modeling and simulation of the hydrogen blended gas-electricity integrated energy system and influence analysis of hydrogen blending modes," Energy, Elsevier, vol. 239(PA).
    10. Mao, Yanpeng & Gao, Yibo & Dong, Wei & Wu, Han & Song, Zhanlong & Zhao, Xiqiang & Sun, Jing & Wang, Wenlong, 2020. "Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide – A review," Applied Energy, Elsevier, vol. 267(C).
    11. Kong, Hui & Hao, Yong & Jin, Hongguang, 2018. "Isothermal versus two-temperature solar thermochemical fuel synthesis: A comparative study," Applied Energy, Elsevier, vol. 228(C), pages 301-308.
    12. Srirat Chuayboon & Stéphane Abanades, 2020. "Solar Metallurgy for Sustainable Zn and Mg Production in a Vacuum Reactor Using Concentrated Sunlight," Sustainability, MDPI, vol. 12(17), pages 1-14, August.
    13. Song Yang & Jun Wang & Peter D. Lund, 2020. "Optical Design of a Novel Two-Stage Dish Applied to Thermochemical Water/CO 2 Splitting with the Concept of Rotary Secondary Mirror," Energies, MDPI, vol. 13(14), pages 1-13, July.
    14. Fosheim, Jesse R. & Hathaway, Brandon J. & Davidson, Jane H., 2019. "High efficiency solar chemical-looping methane reforming with ceria in a fixed-bed reactor," Energy, Elsevier, vol. 169(C), pages 597-612.
    15. Gao, Ke & Liu, Xianglei & Jiang, Zhixing & Zheng, Hangbin & Song, Chao & Wang, Xinrui & Tian, Cheng & Dang, Chunzhuo & Sun, Nan & Xuan, Yimin, 2022. "Direct solar thermochemical CO2 splitting based on Ca- and Al- doped SmMnO3 perovskites: Ultrahigh CO yield within small temperature swing," Renewable Energy, Elsevier, vol. 194(C), pages 482-494.
    16. Sanjay Kumar Kar & Akhoury Sudhir Kumar Sinha & Rohit Bansal & Bahman Shabani & Sidhartha Harichandan, 2023. "Overview of hydrogen economy in Australia," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(1), January.
    17. Koepf, E. & Alxneit, I. & Wieckert, C. & Meier, A., 2017. "A review of high temperature solar driven reactor technology: 25years of experience in research and development at the Paul Scherrer Institute," Applied Energy, Elsevier, vol. 188(C), pages 620-651.
    18. Gao, Yibo & Mao, Yanpeng & Song, Zhanlong & Zhao, Xiqiang & Sun, Jing & Wang, Wenlong & Chen, Guifang & Chen, Shouyan, 2020. "Efficient generation of hydrogen by two-step thermochemical cycles: Successive thermal reduction and water splitting reactions using equal-power microwave irradiation and a high entropy material," Applied Energy, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:143:y:2019:i:c:p:915-921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.