IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v138y2019icp1096-1103.html
   My bibliography  Save this article

A financial comparative study of solar and regular irrigation pumps: Case studies in eastern and southern Iran

Author

Listed:
  • Parvaresh Rizi, Atefeh
  • Ashrafzadeh, Afshin
  • Ramezani, Azita

Abstract

While pressurized irrigation systems can be effectively powered using renewable energy sources, no serious related study is found in Iran in this regard. In the present study, in two different climatic conditions in Iran, development of small-scale solar irrigation were evaluated financially and compared with that of systems powered by the fossil fuel and electricity grid. Financial analysis of systems was provided using life cycle cost (LCC) method. Results showed that in the case of 4.5 and 5.5 kW pumps (for citrus orchard and a vineyard, respectively), photovoltaic irrigation pumps with batteries for energy storage are comparable to the systems in which the electricity used to drive pumps is transmitted through 0.25 km and 1.8 km private lines. It was concluded that, generally, if the required power of irrigation pumps exceeds 3 kW, the electricity supplied by a private power transmission line is more affordable than in-situ generated photovoltaic electricity, if the length of transmission line is less than 2 km. It was also observed that for required power less than 4.5 kW, photovoltaic energy is somewhat comparable to fossil fuel. As Iran is dependent upon its highly subsidized fossil fuels, the financing of solar irrigation projects will not be possible without the help of new policies and laws.

Suggested Citation

  • Parvaresh Rizi, Atefeh & Ashrafzadeh, Afshin & Ramezani, Azita, 2019. "A financial comparative study of solar and regular irrigation pumps: Case studies in eastern and southern Iran," Renewable Energy, Elsevier, vol. 138(C), pages 1096-1103.
  • Handle: RePEc:eee:renene:v:138:y:2019:i:c:p:1096-1103
    DOI: 10.1016/j.renene.2019.02.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119301703
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.02.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahmoud, Elham & el Nather, Hoseen, 2003. "Renewable energy and sustainable developments in Egypt: photovoltaic water pumping in remote areas," Applied Energy, Elsevier, vol. 74(1-2), pages 141-147, January.
    2. Meah, Kala & Fletcher, Steven & Ula, Sadrul, 2008. "Solar photovoltaic water pumping for remote locations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 472-487, February.
    3. Krauter, S & Rüther, R, 2004. "Considerations for the calculation of greenhouse gas reduction by photovoltaic solar energy," Renewable Energy, Elsevier, vol. 29(3), pages 345-355.
    4. Sontake, Vimal Chand & Kalamkar, Vilas R., 2016. "Solar photovoltaic water pumping system - A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1038-1067.
    5. Chandel, S.S. & Nagaraju Naik, M. & Chandel, Rahul, 2015. "Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1084-1099.
    6. Purohit, Pallav & Michaelowa, Axel, 2008. "CDM potential of SPV pumps in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 181-199, January.
    7. Lorenzo, C. & Almeida, R.H. & Martínez-Núñez, M. & Narvarte, L. & Carrasco, L.M., 2018. "Economic assessment of large power photovoltaic irrigation systems in the ECOWAS region," Energy, Elsevier, vol. 155(C), pages 992-1003.
    8. Qoaider, Louy & Steinbrecht, Dieter, 2010. "Photovoltaic systems: A cost competitive option to supply energy to off-grid agricultural communities in arid regions," Applied Energy, Elsevier, vol. 87(2), pages 427-435, February.
    9. Parida, Bhubaneswari & Iniyan, S. & Goic, Ranko, 2011. "A review of solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1625-1636, April.
    10. Closas, Alvar & Rap, Edwin, 2017. "Solar-based groundwater pumping for irrigation: Sustainability, policies, and limitations," Energy Policy, Elsevier, vol. 104(C), pages 33-37.
    11. Ali, Babkir, 2018. "Comparative assessment of the feasibility for solar irrigation pumps in Sudan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 413-420.
    12. Meah, Kala & Ula, Sadrul & Barrett, Steven, 2008. "Solar photovoltaic water pumping--opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 1162-1175, May.
    13. Alamdari, Pouria & Nematollahi, Omid & Alemrajabi, Ali Akbar, 2013. "Solar energy potentials in Iran: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 778-788.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rahman, Syed Mahbubur & Mori, Akihisa & Rahman, Syed Mustafizur, 2022. "How does climate adaptation co-benefits help scale-up solar-powered irrigation? A case of the Barind Tract, Bangladesh," Renewable Energy, Elsevier, vol. 182(C), pages 1039-1048.
    2. Ghasemi-Mobtaker, Hassan & Mostashari-Rad, Fatemeh & Saber, Zahra & Chau, Kwok-wing & Nabavi-Pelesaraei, Ashkan, 2020. "Application of photovoltaic system to modify energy use, environmental damages and cumulative exergy demand of two irrigation systems-A case study: Barley production of Iran," Renewable Energy, Elsevier, vol. 160(C), pages 1316-1334.
    3. Pardo, M.A. & Navarro-González, F.J., 2024. "Sizing and scheduling optimisation method for off-grid battery photovoltaic irrigation networks," Renewable Energy, Elsevier, vol. 221(C).
    4. Misagh Irandoostshahrestani & Daniel R. Rousse, 2022. "Photovoltaic Electrification and Water Pumping Using the Concepts of Water Shortage Probability and Loss of Power Supply Probability: A Case Study," Energies, MDPI, vol. 16(1), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gopal, C. & Mohanraj, M. & Chandramohan, P. & Chandrasekar, P., 2013. "Renewable energy source water pumping systems—A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 351-370.
    2. Mohammed Wazed, Saeed & Hughes, Ben Richard & O’Connor, Dominic & Kaiser Calautit, John, 2018. "A review of sustainable solar irrigation systems for Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1206-1225.
    3. Kaldellis, J.K. & Meidanis, E. & Zafirakis, D., 2011. "Experimental energy analysis of a stand-alone photovoltaic-based water pumping installation," Applied Energy, Elsevier, vol. 88(12), pages 4556-4562.
    4. Muhsen, Dhiaa Halboot & Khatib, Tamer & Nagi, Farrukh, 2017. "A review of photovoltaic water pumping system designing methods, control strategies and field performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 70-86.
    5. Yu, Yingdong & Liu, Jiahong & Wang, Ying & Xiang, Chenyao & Zhou, Jinjun, 2018. "Practicality of using solar energy for cassava irrigation in the Guangxi Autonomous Region, China," Applied Energy, Elsevier, vol. 230(C), pages 31-41.
    6. Krishna Muniyoor, 2020. "Cost-benefit analysis of adopting the solar photovoltaic water pumping system: A case of Rajasthan," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2020(2), pages 35-49.
    7. Xue, Jinlin, 2017. "Photovoltaic agriculture - New opportunity for photovoltaic applications in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1-9.
    8. Ahmed, Eihab E.E. & Demirci, Alpaslan, 2022. "Multi-stage and multi-objective optimization for optimal sizing of stand-alone photovoltaic water pumping systems," Energy, Elsevier, vol. 252(C).
    9. Camille Soenen & Vincent Reinbold & Simon Meunier & Judith A. Cherni & Arouna Darga & Philippe Dessante & Loïc Quéval, 2021. "Comparison of Tank and Battery Storages for Photovoltaic Water Pumping," Energies, MDPI, vol. 14(9), pages 1-16, April.
    10. Pérez-Alonso, J. & Pérez-García, M. & Pasamontes-Romera, M. & Callejón-Ferre, A.J., 2012. "Performance analysis and neural modelling of a greenhouse integrated photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4675-4685.
    11. Nogueira, Carlos Eduardo Camargo & Bedin, Janaína & Niedzialkoski, Rosana Krauss & de Souza, Samuel Nelson Melegari & das Neves, João Carlos Munhoz, 2015. "Performance of monocrystalline and polycrystalline solar panels in a water pumping system in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1610-1616.
    12. Chueco-Fernández, Francisco J. & Bayod-Rújula, Ángel A., 2010. "Power supply for pumping systems in northern Chile: Photovoltaics as alternative to grid extension and diesel engines," Energy, Elsevier, vol. 35(7), pages 2909-2921.
    13. Rubio-Aliaga, Á. & García-Cascales, M.S. & Sánchez-Lozano, J.M. & Molina-García, A., 2019. "Multidimensional analysis of groundwater pumping for irrigation purposes: Economic, energy and environmental characterization for PV power plant integration," Renewable Energy, Elsevier, vol. 138(C), pages 174-186.
    14. Pavlos Nikolaidis, 2023. "Solar Energy Harnessing Technologies towards De-Carbonization: A Systematic Review of Processes and Systems," Energies, MDPI, vol. 16(17), pages 1-39, August.
    15. Chandel, S.S. & Nagaraju Naik, M. & Chandel, Rahul, 2015. "Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1084-1099.
    16. Aliyu, Mansur & Hassan, Ghassan & Said, Syed A. & Siddiqui, Muhammad U. & Alawami, Ali T. & Elamin, Ibrahim M., 2018. "A review of solar-powered water pumping systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 61-76.
    17. Kaldellis, J.K. & Spyropoulos, G.C. & Kavadias, K.A. & Koronaki, I.P., 2009. "Experimental validation of autonomous PV-based water pumping system optimum sizing," Renewable Energy, Elsevier, vol. 34(4), pages 1106-1113.
    18. López-Luque, R. & Reca, J. & Martínez, J., 2015. "Optimal design of a standalone direct pumping photovoltaic system for deficit irrigation of olive orchards," Applied Energy, Elsevier, vol. 149(C), pages 13-23.
    19. Periasamy, Packiam & Jain, N.K. & Singh, I.P., 2015. "A review on development of photovoltaic water pumping system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 918-925.
    20. Liu, Shih-Yuan & Perng, Yeng-Horng & Ho, Yu-Feng, 2013. "The effect of renewable energy application on Taiwan buildings: What are the challenges and strategies for solar energy exploitation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 92-106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:138:y:2019:i:c:p:1096-1103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.