IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v136y2019icp993-1001.html
   My bibliography  Save this article

Biodiesel production from Norouzak (Salvia leriifolia) oil using choline hydroxide catalyst in a microchannel reactor

Author

Listed:
  • Gholami, Ali
  • Pourfayaz, Fathollah
  • Hajinezhad, Ahmad
  • Mohadesi, Majid

Abstract

Nowadays, in most industrial units, biodiesel is produced through transesterification of edible oil and methanol using homogeneous basic catalysts in stirred-tank reactors. The drawbacks of this method include the high cost of feedstock, long reaction time, high energy consumption, and excessive wastewater production. The present study investigated an alternative process, in which biodiesel was produced from indigenous, inedible Norouzak (Salvia leriifolia) oil in the presence of choline hydroxide (ChOH) as an ionic liquid catalyst in a microchannel reactor. Taking into account catalyst concentration, methanol-to-oil volume ratio, and reaction time as the independent variables, Response Surface Methodology (RSM) with a Box-Behnken experimental design was used to determine the optimal reaction efficiency as the response. An efficiency of 93.36% was predicted by the model for a catalyst concentration of 6.11 wt%, methanol-to-oil volume ratio of 0.37, and reaction time of 12.48 min. By conducting experiments under these conditions, an efficiency of 96.8% was obtained. In comparison with the results of previous studies in which ChOH was used as the transesterification catalyst, employing the microchannel reactor in this study reduced the reaction time to less than 0.1 that of a mechanical stirrer. Moreover, the energy consumption was 32 times lower than that of a mechanical stirrer. The use of ChOH instead of KOH in a microchannel reactor increased efficiency by 1.9–4.9%. Compared to heterogeneous catalysts, ChOH can reduce the catalyst and alcohol consumption by at least 29% and 30%, respectively.

Suggested Citation

  • Gholami, Ali & Pourfayaz, Fathollah & Hajinezhad, Ahmad & Mohadesi, Majid, 2019. "Biodiesel production from Norouzak (Salvia leriifolia) oil using choline hydroxide catalyst in a microchannel reactor," Renewable Energy, Elsevier, vol. 136(C), pages 993-1001.
  • Handle: RePEc:eee:renene:v:136:y:2019:i:c:p:993-1001
    DOI: 10.1016/j.renene.2019.01.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119300576
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.01.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ullah, Zahoor & Bustam, Mohamad Azmi & Man, Zakaria, 2015. "Biodiesel production from waste cooking oil by acidic ionic liquid as a catalyst," Renewable Energy, Elsevier, vol. 77(C), pages 521-526.
    2. Zhang, Pingbo & Liu, Yanlei & Fan, Mingming & Jiang, Pingping, 2016. "Catalytic performance of a novel amphiphilic alkaline ionic liquid for biodiesel production: Influence of basicity and conductivity," Renewable Energy, Elsevier, vol. 86(C), pages 99-105.
    3. Fan, Mingming & Huang, Jianglei & Yang, Jing & Zhang, Pingbo, 2013. "Biodiesel production by transesterification catalyzed by an efficient choline ionic liquid catalyst," Applied Energy, Elsevier, vol. 108(C), pages 333-339.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R, Gopi & Thangarasu, Vinoth & Vinayakaselvi M, Angkayarkan & Ramanathan, Anand, 2022. "A critical review of recent advancements in continuous flow reactors and prominent integrated microreactors for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Qianqian Yue & Lijing Gao & Guomin Xiao & Wei Xu, 2023. "Biodiesel Preparation without a Cosolvent in an Opposite-Side Micro-Fixed-Bed Reactor," Energies, MDPI, vol. 16(12), pages 1-14, June.
    3. Aghel, Babak & Gouran, Ashkan & Parandi, Ehsan & Jumeh, Binta Hadi & Nodeh, Hamid Rashidi, 2022. "Production of biodiesel from high acidity waste cooking oil using nano GO@MgO catalyst in a microreactor," Renewable Energy, Elsevier, vol. 200(C), pages 294-302.
    4. Mohadesi, Majid & Gouran, Ashkan & Dehghan Dehnavi, Amir, 2021. "Biodiesel production using low cost material as high effective catalyst in a microreactor," Energy, Elsevier, vol. 219(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hosseini, Shokoufe & Moradi, G.R. & Bahrami, Kiumars, 2019. "Synthesis of a novel stabilized basic ionic liquid through immobilization on boehmite nanoparticles: A robust nanocatalyst for biodiesel production from soybean oil," Renewable Energy, Elsevier, vol. 138(C), pages 70-78.
    2. Wang, Yongqiang & Zhao, Dan & Chen, Guanyi & Liu, Shejiang & Ji, Na & Ding, Hui & Fu, Jianfeng, 2019. "Preparation of phosphotungstic acid based poly(ionic liquid) and its application to esterification of palmitic acid," Renewable Energy, Elsevier, vol. 133(C), pages 317-324.
    3. A. K. Azad, 2017. "Biodiesel from Mandarin Seed Oil: A Surprising Source of Alternative Fuel," Energies, MDPI, vol. 10(11), pages 1-22, October.
    4. Gualberto Zavarize, Danilo & Braun, Heder & Diniz de Oliveira, Jorge, 2021. "Methanolysis of low-FFA waste cooking oil with novel carbon-based heterogeneous acid catalyst derived from Amazon açaí berry seeds," Renewable Energy, Elsevier, vol. 171(C), pages 621-634.
    5. Cai, Dongren & Zhan, Guowu & Xiao, Jingran & Zhou, Shu-Feng & Qiu, Ting, 2021. "Design and synthesis of novel amphipathic ionic liquids for biodiesel production from soapberry oil," Renewable Energy, Elsevier, vol. 168(C), pages 779-790.
    6. Wang, Quan & Wenlei Xie, & Guo, Lihong, 2022. "Molybdenum and zirconium oxides supported on KIT-6 silica: A recyclable composite catalyst for one–pot biodiesel production from simulated low-quality oils," Renewable Energy, Elsevier, vol. 187(C), pages 907-922.
    7. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    8. Singh, Paramvir & Varun, & Chauhan, S.R. & Kumar, Niraj, 2016. "A review on methodology for complete elimination of diesel from CI engines using mixed feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1110-1125.
    9. Li, Lu & Zou, Changjun & Zhou, Lu & Lin, Lang, 2017. "Cucurbituril-protected Cs2.5H0.5PW12O40 for optimized biodiesel production from waste cooking oil," Renewable Energy, Elsevier, vol. 107(C), pages 14-22.
    10. Racar, Marko & Šoljić Jerbić, Ivana & Glasovac, Zoran & Jukić, Ante, 2023. "Guanidine catalysts for biodiesel production: Activity, process modelling and optimization," Renewable Energy, Elsevier, vol. 202(C), pages 1046-1053.
    11. Ching-Velasquez, Jonny & Fernández-Lafuente, Roberto & Rodrigues, Rafael C. & Plata, Vladimir & Rosales-Quintero, Arnulfo & Torrestiana-Sánchez, Beatriz & Tacias-Pascacio, Veymar G., 2020. "Production and characterization of biodiesel from oil of fish waste by enzymatic catalysis," Renewable Energy, Elsevier, vol. 153(C), pages 1346-1354.
    12. Yatish, K.V. & Omkaresh, B.R. & Kattimani, Veeranna R. & Lalithamba, H.S. & Sakar, M. & Balakrishna, R. Geetha, 2023. "Solar energy-assisted reactor for the sustainable biodiesel production from Butea monosperma oil: Optimization, kinetic, thermodynamic and assessment studies," Energy, Elsevier, vol. 263(PB).
    13. Ananya Satapathy & Kankana Saikia & Samuel Lalthazuala Rokhum, 2023. "Biodiesel Production Using a Banana Peel Extract-Mediated Highly Basic Heterogeneous Nanocatalyst," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    14. Phromphithak, Sanphawat & Meepowpan, Puttinan & Shimpalee, Sirivatch & Tippayawong, Nakorn, 2020. "Transesterification of palm oil into biodiesel using ChOH ionic liquid in a microwave heated continuous flow reactor," Renewable Energy, Elsevier, vol. 154(C), pages 925-936.
    15. Qian, Kun & Shen, Xiang & Wang, Yanxin & Gao, Qiang & Ding, Hongwei, 2015. "In-situ transesterification of Jatropha oil over an efficient solid alkali using low leaching component supported on industrial silica gel," Energy, Elsevier, vol. 93(P2), pages 2251-2257.
    16. Ella Cebisa Linganiso & Boitumelo Tlhaole & Lindokuhle Precious Magagula & Silas Dziike & Linda Zikhona Linganiso & Tshwafo Elias Motaung & Nosipho Moloto & Zikhona Nobuntu Tetana, 2022. "Biodiesel Production from Waste Oils: A South African Outlook," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    17. Xie, Wenlei & Li, Jiangbo, 2023. "Magnetic solid catalysts for sustainable and cleaner biodiesel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    18. Guan, Qingqing & Shang, Hua & Liu, Jing & Gu, Junjie & Li, Bin & Miao, Rongrong & Chen, Qiuling & Ning, Ping, 2016. "Biodiesel from transesterification at low temperature by AlCl3 catalysis in ethanol and carbon dioxide as cosolvent: Process, mechanism and application," Applied Energy, Elsevier, vol. 164(C), pages 380-386.
    19. Troter, Dragan Z. & Todorović, Zoran B. & Đokić-Stojanović, Dušica R. & Stamenković, Olivera S. & Veljković, Vlada B., 2016. "Application of ionic liquids and deep eutectic solvents in biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 473-500.
    20. Ali, Chaudhry Haider & Qureshi, Abdul Sattar & Mbadinga, Serge Maurice & Liu, Jin-Feng & Yang, Shi-Zhong & Mu, Bo-Zhong, 2017. "Biodiesel production from waste cooking oil using onsite produced purified lipase from Pseudomonas aeruginosa FW_SH-1: Central composite design approach," Renewable Energy, Elsevier, vol. 109(C), pages 93-100.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:136:y:2019:i:c:p:993-1001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.