IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v130y2019icp1036-1048.html
   My bibliography  Save this article

A study of the flow field of an axial flow hydraulic turbine with a collection device in an open channel

Author

Listed:
  • Nishi, Yasuyuki
  • Sato, Genki
  • Shiohara, Daishi
  • Inagaki, Terumi
  • Kikuchi, Norio

Abstract

Axial flow hydraulic turbine with a collection device aims to improve the output using an open channel and concentrating/increasing the volume and velocity of flow. The flow field of this turbine is extremely complex because it has a free surface, and its internal and external flows are mixed. Several such hydraulic turbines are occasionally placed in series against a flow. Thus, it is of utmost importance to elucidate the flow structure downstream of the hydraulic turbine. The proposed study aims to elucidate the flow field of this hydraulic turbine in a shallow open channel by the means of PIV measurement, multiphase flow analysis considering the free surface, and single-phase flow analysis considering uniform flow as the premise. As a result, the characteristics of the flow field of the hydraulic turbine considered herein in an open channel are clarified. Especially, in terms of the slipstream characteristics, it is clarified that due to the influence of free surface and channel bottom, the type of vortexes that occur downstream of the hydraulic turbine are different, and the process and distance of velocity recovery differ depending on the vortex.

Suggested Citation

  • Nishi, Yasuyuki & Sato, Genki & Shiohara, Daishi & Inagaki, Terumi & Kikuchi, Norio, 2019. "A study of the flow field of an axial flow hydraulic turbine with a collection device in an open channel," Renewable Energy, Elsevier, vol. 130(C), pages 1036-1048.
  • Handle: RePEc:eee:renene:v:130:y:2019:i:c:p:1036-1048
    DOI: 10.1016/j.renene.2018.06.114
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118307808
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.06.114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khan, M.J. & Bhuyan, G. & Iqbal, M.T. & Quaicoe, J.E., 2009. "Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review," Applied Energy, Elsevier, vol. 86(10), pages 1823-1835, October.
    2. Gaden, David L.F. & Bibeau, Eric L., 2010. "A numerical investigation into the effect of diffusers on the performance of hydro kinetic turbines using a validated momentum source turbine model," Renewable Energy, Elsevier, vol. 35(6), pages 1152-1158.
    3. Yuji Ohya & Takashi Karasudani, 2010. "A Shrouded Wind Turbine Generating High Output Power with Wind-lens Technology," Energies, MDPI, vol. 3(4), pages 1-16, March.
    4. Kolekar, Nitin & Banerjee, Arindam, 2015. "Performance characterization and placement of a marine hydrokinetic turbine in a tidal channel under boundary proximity and blockage effects," Applied Energy, Elsevier, vol. 148(C), pages 121-133.
    5. Nishi, Yasuyuki & Sato, Genki & Shiohara, Daishi & Inagaki, Terumi & Kikuchi, Norio, 2017. "Performance characteristics of axial flow hydraulic turbine with a collection device in free surface flow field," Renewable Energy, Elsevier, vol. 112(C), pages 53-62.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nishi, Yasuyuki & Suzuo, Ryouta & Sukemori, Daichi & Inagaki, Terumi, 2020. "Loss analysis of gravitation vortex type water turbine and influence of flow rate on the turbine’s performance," Renewable Energy, Elsevier, vol. 155(C), pages 1103-1117.
    2. Benchikh Le Hocine, Alla Eddine & Jay Lacey, R.W. & Poncet, Sébastien, 2019. "Multiphase modeling of the free surface flow through a Darrieus horizontal axis shallow-water turbine," Renewable Energy, Elsevier, vol. 143(C), pages 1890-1901.
    3. Yosry, Ahmed Gharib & Álvarez, Eduardo Álvarez & Valdés, Rodolfo Espina & Pandal, Adrián & Marigorta, Eduardo Blanco, 2023. "Experimental and multiphase modeling of small vertical-axis hydrokinetic turbine with free-surface variations," Renewable Energy, Elsevier, vol. 203(C), pages 788-801.
    4. Nishi, Yasuyuki & Koga, Hiromichi & Wee, Yi Hong, 2023. "Multi-objective optimization of an axial flow hydraulic turbine with a collection device to be installed in an open channel," Renewable Energy, Elsevier, vol. 209(C), pages 644-660.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nishi, Yasuyuki & Sato, Genki & Shiohara, Daishi & Inagaki, Terumi & Kikuchi, Norio, 2017. "Performance characteristics of axial flow hydraulic turbine with a collection device in free surface flow field," Renewable Energy, Elsevier, vol. 112(C), pages 53-62.
    2. Maduka, Maduka & Li, Chi Wai, 2022. "Experimental evaluation of power performance and wake characteristics of twin flanged duct turbines in tandem under bi-directional tidal flows," Renewable Energy, Elsevier, vol. 199(C), pages 1543-1567.
    3. Yosry, Ahmed Gharib & Álvarez, Eduardo Álvarez & Valdés, Rodolfo Espina & Pandal, Adrián & Marigorta, Eduardo Blanco, 2023. "Experimental and multiphase modeling of small vertical-axis hydrokinetic turbine with free-surface variations," Renewable Energy, Elsevier, vol. 203(C), pages 788-801.
    4. Nunes, Matheus M. & Mendes, Rafael C.F. & Oliveira, Taygoara F. & Brasil Junior, Antonio C.P., 2019. "An experimental study on the diffuser-enhanced propeller hydrokinetic turbines," Renewable Energy, Elsevier, vol. 133(C), pages 840-848.
    5. Nishi, Yasuyuki & Koga, Hiromichi & Wee, Yi Hong, 2023. "Multi-objective optimization of an axial flow hydraulic turbine with a collection device to be installed in an open channel," Renewable Energy, Elsevier, vol. 209(C), pages 644-660.
    6. Mansoor Ahmed Zaib & Arbaz Waqar & Shoukat Abbas & Saeed Badshah & Sajjad Ahmad & Muhammad Amjad & Seyed Saeid Rahimian Koloor & Mohamed Eldessouki, 2022. "Effect of Blade Diameter on the Performance of Horizontal-Axis Ocean Current Turbine," Energies, MDPI, vol. 15(15), pages 1-13, July.
    7. Elbatran, A.H. & Ahmed, Yasser M. & Shehata, Ahmed S., 2017. "Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine," Energy, Elsevier, vol. 134(C), pages 566-584.
    8. Faruk Guner & Hilmi Zenk, 2020. "Experimental, Numerical and Application Analysis of Hydrokinetic Turbine Performance with Fixed Rotating Blades," Energies, MDPI, vol. 13(3), pages 1-15, February.
    9. Modali, Pranav K. & Vinod, Ashwin & Banerjee, Arindam, 2021. "Towards a better understanding of yawed turbine wake for efficient wake steering in tidal arrays," Renewable Energy, Elsevier, vol. 177(C), pages 482-494.
    10. Aghsaee, Payam & Markfort, Corey D., 2018. "Effects of flow depth variations on the wake recovery behind a horizontal-axis hydrokinetic in-stream turbine," Renewable Energy, Elsevier, vol. 125(C), pages 620-629.
    11. Liu, Jie & Song, Mengxuan & Chen, Kai & Wu, Bingheng & Zhang, Xing, 2016. "An optimization methodology for wind lens profile using Computational Fluid Dynamics simulation," Energy, Elsevier, vol. 109(C), pages 602-611.
    12. Kumar, Dinesh & Sarkar, Shibayan, 2016. "Numerical investigation of hydraulic load and stress induced in Savonius hydrokinetic turbine with the effects of augmentation techniques through fluid-structure interaction analysis," Energy, Elsevier, vol. 116(P1), pages 609-618.
    13. Niebuhr, C.M. & van Dijk, M. & Neary, V.S. & Bhagwan, J.N., 2019. "A review of hydrokinetic turbines and enhancement techniques for canal installations: Technology, applicability and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    14. El Fajri, Oumnia & Bowman, Joshua & Bhushan, Shanti & Thompson, David & O'Doherty, Tim, 2022. "Numerical study of the effect of tip-speed ratio on hydrokinetic turbine wake recovery," Renewable Energy, Elsevier, vol. 182(C), pages 725-750.
    15. Lo Brutto, Ottavio A. & Thiébot, Jérôme & Guillou, Sylvain S. & Gualous, Hamid, 2016. "A semi-analytic method to optimize tidal farm layouts – Application to the Alderney Race (Raz Blanchard), France," Applied Energy, Elsevier, vol. 183(C), pages 1168-1180.
    16. Nishi, Yasuyuki & Suzuo, Ryouta & Sukemori, Daichi & Inagaki, Terumi, 2020. "Loss analysis of gravitation vortex type water turbine and influence of flow rate on the turbine’s performance," Renewable Energy, Elsevier, vol. 155(C), pages 1103-1117.
    17. Amelio, Mario & Barbarelli, Silvio & Florio, Gaetano & Scornaienchi, Nino Michele & Minniti, Giovanni & Cutrupi, Antonino & Sánchez-Blanco, Manuel, 2012. "Innovative tidal turbine with central deflector for the exploitation of river and sea currents in on-shore installations," Applied Energy, Elsevier, vol. 97(C), pages 944-955.
    18. Craig Hill & Vincent S. Neary & Michele Guala & Fotis Sotiropoulos, 2020. "Performance and Wake Characterization of a Model Hydrokinetic Turbine: The Reference Model 1 (RM1) Dual Rotor Tidal Energy Converter," Energies, MDPI, vol. 13(19), pages 1-21, October.
    19. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 108(C), pages 502-522.
    20. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a single stage modified Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 113(C), pages 461-478.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:130:y:2019:i:c:p:1036-1048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.