IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v126y2018icp431-436.html
   My bibliography  Save this article

Extraction of fresh banana waste juice as non-cellulosic and non-food renewable feedstock for direct lipase production

Author

Listed:
  • Chai, Siu Yeng
  • Abbasiliasi, Sahar
  • Lee, Chee Keong
  • Ibrahim, Tengku Azmi Tengku
  • Kadkhodaei, Saeid
  • Mohamed, Mohd Shamzi
  • Hashim, Rokiah
  • Tan, Joo Shun

Abstract

The bulk availability of banana waste in the world has made a move towards the development of alternative novel renewable sugars in present study as the pressed juice from banana frond and pseudostem was found to contain high level of renewable sugars such as glucose, sucrose and fructose. By using a simple sugarcane press, the glucose content in the banana frond juice was 16.6 g/L, which accounts for 55% of the total fermentable sugars. From the results, the lipase production reached ∼200 U/mL in medium comprising banana frond juice and banana pseudostem juice, comparable to basal medium with glucose (206.3 U/mL) as carbon source in basal media. As banana pseudostem possesses high content of starch, microwave heating pretreatment showed 36% enhancement of glucose content (10.4 g/L) in juice as compared to direct pressed juice (7.78 g/L). This result indicates that banana waste juice can be used as an alternative fermentable carbon source for lipase production and has potential as a fermentable carbon source.

Suggested Citation

  • Chai, Siu Yeng & Abbasiliasi, Sahar & Lee, Chee Keong & Ibrahim, Tengku Azmi Tengku & Kadkhodaei, Saeid & Mohamed, Mohd Shamzi & Hashim, Rokiah & Tan, Joo Shun, 2018. "Extraction of fresh banana waste juice as non-cellulosic and non-food renewable feedstock for direct lipase production," Renewable Energy, Elsevier, vol. 126(C), pages 431-436.
  • Handle: RePEc:eee:renene:v:126:y:2018:i:c:p:431-436
    DOI: 10.1016/j.renene.2018.03.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118303616
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.03.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Binod, Parameswaran & Satyanagalakshmi, Karri & Sindhu, Raveendran & Janu, Kanakambaran Usha & Sukumaran, Rajeev K. & Pandey, Ashok, 2012. "Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse," Renewable Energy, Elsevier, vol. 37(1), pages 109-116.
    2. Mekhilef, S. & Saidur, R. & Safari, A. & Mustaffa, W.E.S.B., 2011. "Biomass energy in Malaysia: Current state and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3360-3370, September.
    3. Peng, Huadong & Chen, Hongzhang & Qu, Yongshui & Li, Hongqiang & Xu, Jian, 2014. "Bioconversion of different sizes of microcrystalline cellulose pretreated by microwave irradiation with/without NaOH," Applied Energy, Elsevier, vol. 117(C), pages 142-148.
    4. Behera, Shuvashish & Arora, Richa & Nandhagopal, N. & Kumar, Sachin, 2014. "Importance of chemical pretreatment for bioconversion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 91-106.
    5. Nanda, Sonil & Azargohar, Ramin & Dalai, Ajay K. & Kozinski, Janusz A., 2015. "An assessment on the sustainability of lignocellulosic biomass for biorefining," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 925-941.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kostas, Emily T. & Beneroso, Daniel & Robinson, John P., 2017. "The application of microwave heating in bioenergy: A review on the microwave pre-treatment and upgrading technologies for biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 12-27.
    2. Abdeshahian, Peyman & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2016. "Potential of biogas production from farm animal waste in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 714-723.
    3. Tian, Wenjing & Li, Jianhao & Zhu, Lirong & Li, Wen & He, Linyan & Gu, Li & Deng, Rui & Shi, Dezhi & Chai, Hongxiang & Gao, Meng, 2021. "Insights of enhancing methane production under high-solid anaerobic digestion of wheat straw by calcium peroxide pretreatment and zero valent iron addition," Renewable Energy, Elsevier, vol. 177(C), pages 1321-1332.
    4. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    5. Rodriguez, Cristina & Alaswad, A. & Benyounis, K.Y. & Olabi, A.G., 2017. "Pretreatment techniques used in biogas production from grass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1193-1204.
    6. Lai, Long Wee & Idris, Ani, 2016. "Comparison of steam-alkali-chemical and microwave-alkali pretreatment for enhancing the enzymatic saccharification of oil palm trunk," Renewable Energy, Elsevier, vol. 99(C), pages 738-746.
    7. Nasrin Aghamohammadi & Stacy Simai Reginald & Ahmad Shamiri & Ali Akbar Zinatizadeh & Li Ping Wong & Nik Meriam Binti Nik Sulaiman, 2016. "An Investigation of Sustainable Power Generation from Oil Palm Biomass: A Case Study in Sarawak," Sustainability, MDPI, vol. 8(5), pages 1-19, April.
    8. Rastogi, Meenal & Shrivastava, Smriti, 2017. "Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 330-340.
    9. Azman, Nadia Farhana & Abdeshahian, Peyman & Kadier, Abudukeremu & Shukor, Hafiza & Al-Shorgani, Najeeb Kaid Nasser & Hamid, Aidil Abdul & Kalil, Mohd Sahaid, 2016. "Utilization of palm kernel cake as a renewable feedstock for fermentative hydrogen production," Renewable Energy, Elsevier, vol. 93(C), pages 700-708.
    10. Faubert, Patrick & Barnabé, Simon & Bouchard, Sylvie & Côté, Richard & Villeneuve, Claude, 2016. "Pulp and paper mill sludge management practices: What are the challenges to assess the impacts on greenhouse gas emissions?," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 107-133.
    11. Olabisi, Michael & Tschirley, David L. & Nyange, David & Awokuse, Titus, 2019. "Energy demand substitution from biomass to imported kerosene: Evidence from Tanzania," Energy Policy, Elsevier, vol. 130(C), pages 243-252.
    12. Gabhane, Jagdish & Kumar, Sachin & Sarma, A.K., 2020. "Effect of glycerol thermal and hydrothermal pretreatments on lignin degradation and enzymatic hydrolysis in paddy straw," Renewable Energy, Elsevier, vol. 154(C), pages 1304-1313.
    13. Solarte-Toro, Juan Camilo & Romero-García, Juan Miguel & Martínez-Patiño, Juan Carlos & Ruiz-Ramos, Encarnación & Castro-Galiano, Eulogio & Cardona-Alzate, Carlos Ariel, 2019. "Acid pretreatment of lignocellulosic biomass for energy vectors production: A review focused on operational conditions and techno-economic assessment for bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 587-601.
    14. Kumar, Praveen & Srivastava, Vimal Chandra & Jha, Mithilesh Kumar, 2016. "Jatropha curcas phytotomy and applications: Development as a potential biofuel plant through biotechnological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 818-838.
    15. Samiran, Nor Afzanizam & Jaafar, Mohammad Nazri Mohd & Ng, Jo-Han & Lam, Su Shiung & Chong, Cheng Tung, 2016. "Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1047-1062.
    16. Xie, Wei & Ren, Yanjing & Jiang, Fan & Liang, Jibao & Du, Shuang-kui, 2020. "Pretreatment of quinoa straw with 1-butyl-3-methylimidazolium chloride and physiochemical characterization of biomass," Renewable Energy, Elsevier, vol. 146(C), pages 1364-1371.
    17. Lim, Xin-Le & Lam, Wei-Haur, 2014. "Public Acceptance of Marine Renewable Energy in Malaysia," Energy Policy, Elsevier, vol. 65(C), pages 16-26.
    18. Saba, N. & Jawaid, M. & Hakeem, K.R. & Paridah, M.T. & Khalina, A. & Alothman, O.Y., 2015. "Potential of bioenergy production from industrial kenaf (Hibiscus cannabinus L.) based on Malaysian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 446-459.
    19. Vaz, Fernanda Leitão & da Rocha Lins, Jennyfer & Alves Alencar, Bárbara Ribeiro & Silva de Abreu, Íthalo Barbosa & Vidal, Esteban Espinosa & Ribeiro, Ester & Valadares de Sá Barretto Sampaio, Everardo, 2021. "Chemical pretreatment of sugarcane bagasse with liquid fraction recycling," Renewable Energy, Elsevier, vol. 174(C), pages 666-673.
    20. Stafford, W. & De Lange, W. & Nahman, A. & Chunilall, V. & Lekha, P. & Andrew, J. & Johakimu, J. & Sithole, B. & Trotter, D., 2020. "Forestry biorefineries," Renewable Energy, Elsevier, vol. 154(C), pages 461-475.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:126:y:2018:i:c:p:431-436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.