IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v120y2018icp98-113.html
   My bibliography  Save this article

A novel sun-tracking and target-aiming method to improve the concentration efficiency of solar central receiver systems

Author

Listed:
  • Hu, Yeguang
  • Shen, Hao
  • Yao, Yingxue

Abstract

The solar central receiver (SCR) system is an important candidate for solar thermal utilization. The cosine loss and astigmatism of heliostats are two major factors which lead to the low concentration efficiency of SCR systems. Most public discussions of concentration efficiency improvement of SCR systems focused on astigmatism correction; however, not so many studies were given to reducing cosine loss of heliostats. In this paper, we proposed a new sun-tracking and target-aiming method for SCR systems in order to eliminate the cosine loss and enhance the concentration efficiency. We calculated the tracking formulae of the sun-tracking strategy and target-aiming strategy by using coordinate rotation transformation method, designed an aspheric lens in target-aiming device by using non-imaging optics principles, and finally constructed the optical model of the proposed system in TracePro software to simulate its concentration performance. The computational results demonstrated the kinematic feasibility of the sun-tracking strategy and target-aiming strategy. The simulation results showed that the proposed method can improve the concentration efficiency of SCR systems obviously in some cases. This novel sun-tracking and target-aiming method sheds light on the field efficiency improvement of SCR systems.

Suggested Citation

  • Hu, Yeguang & Shen, Hao & Yao, Yingxue, 2018. "A novel sun-tracking and target-aiming method to improve the concentration efficiency of solar central receiver systems," Renewable Energy, Elsevier, vol. 120(C), pages 98-113.
  • Handle: RePEc:eee:renene:v:120:y:2018:i:c:p:98-113
    DOI: 10.1016/j.renene.2017.12.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117312399
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.12.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chong, K.K. & Lim, C.Y. & Hiew, C.W., 2011. "Cost-effective solar furnace system using fixed geometry Non-Imaging Focusing Heliostat and secondary parabolic concentrator," Renewable Energy, Elsevier, vol. 36(5), pages 1595-1602.
    2. Yao, Zhihao & Wang, Zhifeng & Lu, Zhenwu & Wei, Xiudong, 2009. "Modeling and simulation of the pioneer 1MW solar thermal central receiver system in China," Renewable Energy, Elsevier, vol. 34(11), pages 2437-2446.
    3. Yao, Yingxue & Hu, Yeguang & Gao, Shengdong & Yang, Gang & Du, Jinguang, 2014. "A multipurpose dual-axis solar tracker with two tracking strategies," Renewable Energy, Elsevier, vol. 72(C), pages 88-98.
    4. Li, Xin & Kong, Weiqiang & Wang, Zhifeng & Chang, Chun & Bai, Fengwu, 2010. "Thermal model and thermodynamic performance of molten salt cavity receiver," Renewable Energy, Elsevier, vol. 35(5), pages 981-988.
    5. Wei, Xiudong & Lu, Zhenwu & Wang, Zhifeng & Yu, Weixing & Zhang, Hongxing & Yao, Zhihao, 2010. "A new method for the design of the heliostat field layout for solar tower power plant," Renewable Energy, Elsevier, vol. 35(9), pages 1970-1975.
    6. Collado, Francisco J. & Guallar, Jesús, 2012. "Campo: Generation of regular heliostat fields," Renewable Energy, Elsevier, vol. 46(C), pages 49-59.
    7. Mousazadeh, Hossein & Keyhani, Alireza & Javadi, Arzhang & Mobli, Hossein & Abrinia, Karen & Sharifi, Ahmad, 2009. "A review of principle and sun-tracking methods for maximizing solar systems output," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1800-1818, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mostafavi Tehrani, S. Saeed & Taylor, Robert A., 2016. "Off-design simulation and performance of molten salt cavity receivers in solar tower plants under realistic operational modes and control strategies," Applied Energy, Elsevier, vol. 179(C), pages 698-715.
    2. Saghafifar, Mohammad & Gadalla, Mohamed & Mohammadi, Kasra, 2019. "Thermo-economic analysis and optimization of heliostat fields using AINEH code: Analysis of implementation of non-equal heliostats (AINEH)," Renewable Energy, Elsevier, vol. 135(C), pages 920-935.
    3. Wang, Kun & He, Ya-Ling & Qiu, Yu & Zhang, Yuwen, 2016. "A novel integrated simulation approach couples MCRT and Gebhart methods to simulate solar radiation transfer in a solar power tower system with a cavity receiver," Renewable Energy, Elsevier, vol. 89(C), pages 93-107.
    4. Xie, Qiyue & Guo, Ziqi & Liu, Daifei & Chen, Zhisheng & Shen, Zhongli & Wang, Xiaoli, 2021. "Optimization of heliostat field distribution based on improved Gray Wolf optimization algorithm," Renewable Energy, Elsevier, vol. 176(C), pages 447-458.
    5. Saghafifar, Mohammad & Gadalla, Mohamed, 2016. "Thermo-economic analysis of air bottoming cycle hybridization using heliostat field collector: A comparative analysis," Energy, Elsevier, vol. 112(C), pages 698-714.
    6. Collado, Francisco J. & Guallar, Jesús, 2013. "A review of optimized design layouts for solar power tower plants with campo code," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 142-154.
    7. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal, 2013. "A review of studies on central receiver solar thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 12-39.
    8. Chang, Zheshao & Li, Xin & Xu, Chao & Chang, Chun & Wang, Zhifeng, 2014. "Numerical simulation on the thermal performance of a solar molten salt cavity receiver," Renewable Energy, Elsevier, vol. 69(C), pages 324-335.
    9. Atif, Maimoon. & Al-Sulaiman, Fahad A., 2017. "Energy and exergy analyses of solar tower power plant driven supercritical carbon dioxide recompression cycles for six different locations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 153-167.
    10. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    11. Kerme, Esa Dube & Orfi, Jamel & Fung, Alan S. & Salilih, Elias M. & Khan, Salah Ud-Din & Alshehri, Hassan & Ali, Emad & Alrasheed, Mohammed, 2020. "Energetic and exergetic performance analysis of a solar driven power, desalination and cooling poly-generation system," Energy, Elsevier, vol. 196(C).
    12. Hu, Peng & Huang, Weidong, 2018. "Performance analysis and optimization of an integrated azimuth tracking solar tower," Energy, Elsevier, vol. 157(C), pages 247-257.
    13. Okoye, Chiemeka Onyeka & Bahrami, Arian & Atikol, Ugur, 2018. "Evaluating the solar resource potential on different tracking surfaces in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1569-1581.
    14. Pirayawaraporn, Alongkorn & Sappaniran, Sahapol & Nooraksa, Sarawin & Prommai, Chanon & Chindakham, Nachaya & Jamroen, Chaowanan, 2023. "Innovative sensorless dual-axis solar tracking system using particle filter," Applied Energy, Elsevier, vol. 338(C).
    15. Jayaraman, K. & Paramasivan, Lavinsaa & Kiumarsi, Shaian, 2017. "Reasons for low penetration on the purchase of photovoltaic (PV) panel system among Malaysian landed property owners," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 562-571.
    16. Zhang, Li & Fang, Jiabin & Wei, Jinjia & Yang, Guidong, 2017. "Numerical investigation on the thermal performance of molten salt cavity receivers with different structures," Applied Energy, Elsevier, vol. 204(C), pages 966-978.
    17. Collado, Francisco J. & Guallar, Jesús, 2012. "Campo: Generation of regular heliostat fields," Renewable Energy, Elsevier, vol. 46(C), pages 49-59.
    18. Zhang, Maolong & Xu, Chao & Du, Xiaoze & Amjad, Muhammad & Wen, Dongsheng, 2017. "Off-design performance of concentrated solar heat and coal double-source boiler power generation with thermocline energy storage," Applied Energy, Elsevier, vol. 189(C), pages 697-710.
    19. Claudia Toro & Matteo V. Rocco & Emanuela Colombo, 2016. "Exergy and Thermoeconomic Analyses of Central Receiver Concentrated Solar Plants Using Air as Heat Transfer Fluid," Energies, MDPI, vol. 9(11), pages 1-17, October.
    20. Thalange, Vinayak C. & Dalvi, Vishwanath H. & Mahajani, Sanjay M. & Panse, Sudhir V. & Joshi, Jyeshtharaj B. & Patil, Raosaheb N., 2017. "Design, optimization and optical performance study of tripod heliostat for solar power tower plant," Energy, Elsevier, vol. 135(C), pages 610-624.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:120:y:2018:i:c:p:98-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.