IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v113y2017icp952-965.html
   My bibliography  Save this article

Long-term performance analysis and power prediction of PV technology in the State of Qatar

Author

Listed:
  • Touati, Farid
  • Chowdhury, Noor Alam
  • Benhmed, Kamel
  • San Pedro Gonzales, Antonio J.R.
  • Al-Hitmi, Mohammed A.
  • Benammar, Mohieddine
  • Gastli, Adel
  • Ben-Brahim, Lazhar

Abstract

“Solar photovoltaic (PV) energy in GCC”- the term seems convincing to many solar PV industries due to high solar exposure in GCC region. However, long-term effects such as dust accumulation and seasonal variation are major drawbacks for solar PV energy. This research aims to investigate PV performance for two years in the harsh environment of Qatar. For data collection, a wireless system has been developed to record critical parameters such as solar irradiance, relative humidity, ambient temperature, PV module temperature, dust, wind speed, and output PV power. Results show that due to panel dusting for eight months, the PV output power decreased by 50%. Also, owing to lower ambient temperatures, clearer sky and cleaner panels due to occasional rainfall, the PV panels show higher output power in Winter than in Summer season. Besides, within one-month, a cloudy condition in Winter causes 20% drop in average output power. Therefore, a strategic plan is needed to build and manage efficiently a PV solar plant in harsh environments such as of Qatar. Energy management requires prediction of energy yield. To this end, using machine-learning, a mathematical model has been established which can predict the output power from PV panels under different environmental conditions.

Suggested Citation

  • Touati, Farid & Chowdhury, Noor Alam & Benhmed, Kamel & San Pedro Gonzales, Antonio J.R. & Al-Hitmi, Mohammed A. & Benammar, Mohieddine & Gastli, Adel & Ben-Brahim, Lazhar, 2017. "Long-term performance analysis and power prediction of PV technology in the State of Qatar," Renewable Energy, Elsevier, vol. 113(C), pages 952-965.
  • Handle: RePEc:eee:renene:v:113:y:2017:i:c:p:952-965
    DOI: 10.1016/j.renene.2017.06.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117305827
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.06.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ishaque, Kashif & Salam, Zainal, 2013. "A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 475-488.
    2. Saber, Esmail M. & Lee, Siew Eang & Manthapuri, Sumanth & Yi, Wang & Deb, Chirag, 2014. "PV (photovoltaics) performance evaluation and simulation-based energy yield prediction for tropical buildings," Energy, Elsevier, vol. 71(C), pages 588-595.
    3. Aksakal, Ahmet & Rehman, Shafiqur, 1999. "Global solar radiation in Northeastern Saudi Arabia," Renewable Energy, Elsevier, vol. 17(4), pages 461-472.
    4. Koutroulis, Eftichios & Kalaitzakis, Kostas, 2003. "Development of an integrated data-acquisition system for renewable energy sources systems monitoring," Renewable Energy, Elsevier, vol. 28(1), pages 139-152.
    5. Salam, Zainal & Ahmed, Jubaer & Merugu, Benny S., 2013. "The application of soft computing methods for MPPT of PV system: A technological and status review," Applied Energy, Elsevier, vol. 107(C), pages 135-148.
    6. Touati, Farid & Al-Hitmi, M.A. & Chowdhury, Noor Alam & Hamad, Jehan Abu & San Pedro Gonzales, Antonio J.R., 2016. "Investigation of solar PV performance under Doha weather using a customized measurement and monitoring system," Renewable Energy, Elsevier, vol. 89(C), pages 564-577.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Chanchangi, Yusuf N. & Ghosh, Aritra & Sundaram, Senthilarasu & Mallick, Tapas K., 2020. "Dust and PV Performance in Nigeria: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    3. Susana Lincoln & Paul Buckley & Ella L. Howes & Katherine M. Maltby & John K. Pinnegar & Thamer S. Ali & Yousef Alosairi & Alanoud Al-Ragum & Alastair Baglee & Chiden Oseo Balmes & Radhouane Ben Hamad, 2021. "A Regional Review of Marine and Coastal Impacts of Climate Change on the ROPME Sea Area," Sustainability, MDPI, vol. 13(24), pages 1-34, December.
    4. Umar, Shayan & Waqas, Adeel & Tanveer, Waqas & Shahzad, Nadia & Janjua, Abdul Kashif & Dehghan, Maziar & Qureshi, Muhammad Salik & Shakir, Sehar, 2023. "A building integrated solar PV surface-cleaning setup to optimize the electricity output of PV modules in a polluted atmosphere," Renewable Energy, Elsevier, vol. 216(C).
    5. Wang, Jianzhou & Zhou, Yilin & Li, Zhiwu, 2022. "Hour-ahead photovoltaic generation forecasting method based on machine learning and multi objective optimization algorithm," Applied Energy, Elsevier, vol. 312(C).
    6. Amir Mosavi & Mohsen Salimi & Sina Faizollahzadeh Ardabili & Timon Rabczuk & Shahaboddin Shamshirband & Annamaria R. Varkonyi-Koczy, 2019. "State of the Art of Machine Learning Models in Energy Systems, a Systematic Review," Energies, MDPI, vol. 12(7), pages 1-42, April.
    7. Marcelo Moya & Javier Martínez-Gómez & Esteban Urresta & Martín Cordovez-Dammer, 2022. "Feature Selection in Energy Consumption of Solar Catamaran INER 1 on Galapagos Island," Energies, MDPI, vol. 15(8), pages 1-17, April.
    8. Martina Radicioni & Valentina Lucaferri & Francesco De Lia & Antonino Laudani & Roberto Lo Presti & Gabriele Maria Lozito & Francesco Riganti Fulginei & Riccardo Schioppo & Mario Tucci, 2021. "Power Forecasting of a Photovoltaic Plant Located in ENEA Casaccia Research Center," Energies, MDPI, vol. 14(3), pages 1-22, January.
    9. Chanchangi, Yusuf N. & Ghosh, Aritra & Baig, Hasan & Sundaram, Senthilarasu & Mallick, Tapas K., 2021. "Soiling on PV performance influenced by weather parameters in Northern Nigeria," Renewable Energy, Elsevier, vol. 180(C), pages 874-892.
    10. Amith Khandakar & Muhammad E. H. Chowdhury & Monzure- Khoda Kazi & Kamel Benhmed & Farid Touati & Mohammed Al-Hitmi & Antonio Jr S. P. Gonzales, 2019. "Machine Learning Based Photovoltaics (PV) Power Prediction Using Different Environmental Parameters of Qatar," Energies, MDPI, vol. 12(14), pages 1-19, July.
    11. Seyed Mahdi Miraftabzadeh & Cristian Giovanni Colombo & Michela Longo & Federica Foiadelli, 2023. "A Day-Ahead Photovoltaic Power Prediction via Transfer Learning and Deep Neural Networks," Forecasting, MDPI, vol. 5(1), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Touati, Farid & Al-Hitmi, M.A. & Chowdhury, Noor Alam & Hamad, Jehan Abu & San Pedro Gonzales, Antonio J.R., 2016. "Investigation of solar PV performance under Doha weather using a customized measurement and monitoring system," Renewable Energy, Elsevier, vol. 89(C), pages 564-577.
    2. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.
    3. Belkaid, A. & Colak, I. & Isik, O., 2016. "Photovoltaic maximum power point tracking under fast varying of solar radiation," Applied Energy, Elsevier, vol. 179(C), pages 523-530.
    4. Jiang, Lian Lian & Nayanasiri, D.R. & Maskell, Douglas L. & Vilathgamuwa, D.M., 2015. "A hybrid maximum power point tracking for partially shaded photovoltaic systems in the tropics," Renewable Energy, Elsevier, vol. 76(C), pages 53-65.
    5. Chul-sung Lee & Hyo-mun Lee & Min-joo Choi & Jong-ho Yoon, 2019. "Performance Evaluation and Prediction of BIPV Systems under Partial Shading Conditions Using Normalized Efficiency," Energies, MDPI, vol. 12(19), pages 1-16, October.
    6. Joshi, Puneet & Arora, Sudha, 2017. "Maximum power point tracking methodologies for solar PV systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1154-1177.
    7. Belhaouas, N. & Cheikh, M.-S. Ait & Agathoklis, P. & Oularbi, M.-R. & Amrouche, B. & Sedraoui, K. & Djilali, N., 2017. "PV array power output maximization under partial shading using new shifted PV array arrangements," Applied Energy, Elsevier, vol. 187(C), pages 326-337.
    8. López-Vargas, Ascensión & Fuentes, Manuel & Vivar, Marta, 2021. "Current challenges for the advanced mass scale monitoring of Solar Home Systems: A review," Renewable Energy, Elsevier, vol. 163(C), pages 2098-2114.
    9. Mellit, Adel & Kalogirou, Soteris A., 2014. "MPPT-based artificial intelligence techniques for photovoltaic systems and its implementation into field programmable gate array chips: Review of current status and future perspectives," Energy, Elsevier, vol. 70(C), pages 1-21.
    10. Mamarelis, Emilio & Petrone, Giovanni & Spagnuolo, Giovanni, 2014. "A two-steps algorithm improving the P&O steady state MPPT efficiency," Applied Energy, Elsevier, vol. 113(C), pages 414-421.
    11. Liu, Yi-Hua & Chen, Jing-Hsiao & Huang, Jia-Wei, 2015. "A review of maximum power point tracking techniques for use in partially shaded conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 436-453.
    12. Muhammad Mateen Afzal Awan & Muhammad Yaqoob Javed & Aamer Bilal Asghar & Krzysztof Ejsmont, 2022. "Performance Optimization of a Ten Check MPPT Algorithm for an Off-Grid Solar Photovoltaic System," Energies, MDPI, vol. 15(6), pages 1-31, March.
    13. Bahrami, Milad & Gavagsaz-Ghoachani, Roghayeh & Zandi, Majid & Phattanasak, Matheepot & Maranzanaa, Gaël & Nahid-Mobarakeh, Babak & Pierfederici, Serge & Meibody-Tabar, Farid, 2019. "Hybrid maximum power point tracking algorithm with improved dynamic performance," Renewable Energy, Elsevier, vol. 130(C), pages 982-991.
    14. Kwan, Trevor Hocksun & Wu, Xiaofeng, 2017. "The Lock-On Mechanism MPPT algorithm as applied to the hybrid photovoltaic cell and thermoelectric generator system," Applied Energy, Elsevier, vol. 204(C), pages 873-886.
    15. Bhatti, Abdul Rauf & Salam, Zainal & Aziz, Mohd Junaidi Bin Abdul & Yee, Kong Pui & Ashique, Ratil H., 2016. "Electric vehicles charging using photovoltaic: Status and technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 34-47.
    16. Gao, Xian-Zhong & Hou, Zhong-Xi & Guo, Zheng & Chen, Xiao-Qian, 2015. "Reviews of methods to extract and store energy for solar-powered aircraft," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 96-108.
    17. Çelik, Özgür & Teke, Ahmet & Tan, Adnan, 2018. "Overview of micro-inverters as a challenging technology in photovoltaic applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3191-3206.
    18. Kamran Ali Khan Niazi & Yongheng Yang & Mashood Nasir & Dezso Sera, 2019. "Evaluation of Interconnection Configuration Schemes for PV Modules with Switched-Inductor Converters under Partial Shading Conditions," Energies, MDPI, vol. 12(14), pages 1-12, July.
    19. Ahmed, Jubaer & Salam, Zainal, 2015. "A critical evaluation on maximum power point tracking methods for partial shading in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 933-953.
    20. Kermadi, Mostefa & Berkouk, El Madjid, 2017. "Artificial intelligence-based maximum power point tracking controllers for Photovoltaic systems: Comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 369-386.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:113:y:2017:i:c:p:952-965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.