IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v104y2017icp129-138.html
   My bibliography  Save this article

Low-frequency oscillations of wind power systems caused by doubly-fed induction generators

Author

Listed:
  • Li, Shenghu

Abstract

The existing researches on the wind power systems do not specify whether of the low-frequency oscillations are caused by the synchronous generators or the wind turbine generators. In this paper, the low-frequency oscillation caused by the doubly-fed induction generators (DFIGs) is studied. The linearized state equations of the DFIGs with the stator voltage transient are newly proposed, where the stator voltages as algebraic variables are expressed by the state variables. The low-frequency oscillation modes, usually caused by the synchronous generators, are newly defined by the mechanical parameters of the DFIGs to derive the participation ratios and find the low-frequency oscillation modes caused by the DFIGs. The low-frequency oscillation modes caused by the DFIGs are validated by the dynamic response using the band-pass/low-pass filter. The multi-step derivatives are proposed to quantify the sensitivity of the oscillation modes caused by the DFIGs to the parameters of the DFIGs and the synchronous generators. The damping schemes are derived by comparing the sensitivity and the accuracy is validated. The numerical results on the IEEE RTS system and a regional system show the error due to neglect to the stator voltage transient. The low-frequency oscillations caused by the DFIG have longer period, and converge more slowly than those caused by the synchronous generators.

Suggested Citation

  • Li, Shenghu, 2017. "Low-frequency oscillations of wind power systems caused by doubly-fed induction generators," Renewable Energy, Elsevier, vol. 104(C), pages 129-138.
  • Handle: RePEc:eee:renene:v:104:y:2017:i:c:p:129-138
    DOI: 10.1016/j.renene.2016.11.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116310370
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.11.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernández, R.D. & Battaiotto, P.E. & Mantz, R.J., 2008. "Wind farm non-linear control for damping electromechanical oscillations of power systems," Renewable Energy, Elsevier, vol. 33(10), pages 2258-2265.
    2. Ghasemi, Hosein & Gharehpetian, G.B. & Nabavi-Niaki, Seyed Ali & Aghaei, Jamshid, 2013. "Overview of subsynchronous resonance analysis and control in wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 234-243.
    3. Domínguez-García, José Luis & Gomis-Bellmunt, Oriol & Bianchi, Fernando D. & Sumper, Andreas, 2012. "Power oscillation damping supported by wind power: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4994-5006.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chro Hama Radha, 2023. "Retrofitting for Improving Indoor Air Quality and Energy Efficiency in the Hospital Building," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    2. Zhang, Guozhou & Hu, Weihao & Cao, Di & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2021. "A novel deep reinforcement learning enabled sparsity promoting adaptive control method to improve the stability of power systems with wind energy penetration," Renewable Energy, Elsevier, vol. 178(C), pages 363-376.
    3. Rui Zhang & Hao Zhang & Jianqiao Ye & Jiaqing Wang & Qing Liu & Shenghu Li, 2023. "Eigen-Sensitivity-Based Sliding Mode Control for LFO Damping in DFIG-Integrated Power Systems," Energies, MDPI, vol. 16(10), pages 1-18, May.
    4. Zhang, Jingjing & Mahmud, Apel & Govaerts, Willy & Chen, Diyi & Xu, Beibei & Xiong, Hualin, 2020. "Sensitivity analysis and low frequency oscillations for bifurcation scenarios in a hydraulic generating system," Renewable Energy, Elsevier, vol. 162(C), pages 334-344.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eltigani, Dalia & Masri, Syafrudin, 2015. "Challenges of integrating renewable energy sources to smart grids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 770-780.
    2. Vural, Ahmet Mete, 2016. "Contribution of high voltage direct current transmission systems to inter-area oscillation damping: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 892-915.
    3. Mararakanye, Ndamulelo & Bekker, Bernard, 2019. "Renewable energy integration impacts within the context of generator type, penetration level and grid characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 441-451.
    4. Nasiri, M. & Milimonfared, J. & Fathi, S.H., 2015. "A review of low-voltage ride-through enhancement methods for permanent magnet synchronous generator based wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 399-415.
    5. Wu, Jie & Wang, Zhi-Xin & Xu, Lie & Wang, Guo-Qiang, 2014. "Key technologies of VSC-HVDC and its application on offshore wind farm in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 247-255.
    6. Bozzi, Silvia & Archetti, Renata & Passoni, Giuseppe, 2014. "Wave electricity production in Italian offshore: A preliminary investigation," Renewable Energy, Elsevier, vol. 62(C), pages 407-416.
    7. Domínguez-García, José Luis & Gomis-Bellmunt, Oriol & Bianchi, Fernando D. & Sumper, Andreas, 2012. "Power oscillation damping supported by wind power: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4994-5006.
    8. Vinay Sewdien & Xiongfei Wang & Jose Rueda Torres & Mart van der Meijden, 2020. "Critical Review of Mitigation Solutions for SSO in Modern Transmission Grids," Energies, MDPI, vol. 13(13), pages 1-20, July.
    9. Hansen, Anca D. & Altin, Müfit & Iov, Florin, 2016. "Provision of enhanced ancillary services from wind power plants – Examples and challenges," Renewable Energy, Elsevier, vol. 97(C), pages 8-18.
    10. Karabacak, Kerim & Cetin, Numan, 2014. "Artificial neural networks for controlling wind–PV power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 804-827.
    11. Fan, Xiao-chao & Wang, Wei-qing, 2016. "Spatial patterns and influencing factors of China׳s wind turbine manufacturing industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 482-496.
    12. Mohd Zin, Abdullah Asuhaimi B. & Pesaran H.A., Mahmoud & Khairuddin, Azhar B. & Jahanshaloo, Leila & Shariati, Omid, 2013. "An overview on doubly fed induction generators′ controls and contributions to wind based electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 692-708.
    13. Surinkaew, Tossaporn & Ngamroo, Issarachai, 2014. "Robust power oscillation damper design for DFIG-based wind turbine based on specified structure mixed H2/H∞ control," Renewable Energy, Elsevier, vol. 66(C), pages 15-24.
    14. Lin, Yonggang & Tu, Le & Liu, Hongwei & Li, Wei, 2016. "Fault analysis of wind turbines in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 482-490.
    15. Etxegarai, Agurtzane & Eguia, Pablo & Torres, Esther & Iturregi, Araitz & Valverde, Victor, 2015. "Review of grid connection requirements for generation assets in weak power grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1501-1514.
    16. Mansouri, M.Mahdi & Nayeripour, Majid & Negnevitsky, Michael, 2016. "Internal electrical protection of wind turbine with doubly fed induction generator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 840-855.
    17. Howlader, Abdul Motin & Senjyu, Tomonobu, 2016. "A comprehensive review of low voltage ride through capability strategies for the wind energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 643-658.
    18. Modi, Nilesh & Saha, Tapan K. & Anderson, Tom, 2013. "Damping performance of the large scale Queensland transmission network with significant wind penetration," Applied Energy, Elsevier, vol. 111(C), pages 225-233.
    19. Clemens Jauch, 2021. "Grid Services and Stress Reduction with a Flywheel in the Rotor of a Wind Turbine," Energies, MDPI, vol. 14(9), pages 1-25, April.
    20. Bianchi, Fernando D. & Domínguez-García, José Luis & Gomis-Bellmunt, Oriol, 2016. "Control of multi-terminal HVDC networks towards wind power integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1055-1068.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:104:y:2017:i:c:p:129-138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.