IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v258y2025ics095183202500105x.html
   My bibliography  Save this article

Remaining useful life prediction based on graph feature attention networks with missing multi-sensor features

Author

Listed:
  • Wang, Yu
  • Peng, Shangjing
  • Wang, Hong
  • Zhang, Mingquan
  • Cao, Hongrui
  • Ma, Liwei

Abstract

Prognostics and health management (PHM) is important to ensure the reliable operation of industrial equipment, where monitoring the degradation process of machinery through multi-source sensors for remaining useful life (RUL) prediction is one of the key tasks. In recent years, deep learning-based time series forecasting methods have been proposed to predict RUL as they have strong capability on temporal correlation modeling for time series gathered by sensors. However, these methods usually operate under the assumption of a static, fixed-dimensional feature set. The proliferation of sensors inevitably escalates the probability of missing and anomalous features within measurement data, thereby causing the dimensions of input features to dynamically fluctuate over time. Therefore, this paper proposes a Graph Feature-Gated Graph Attention Network (GF-GGAT), which is capable of fusing multi-sensor data with partially missing sensor data and performing RUL prediction. First, the problem of spatio-temporal map construction when some sensor data are missing is solved by introducing dynamic time regularization. Second, the feature-deficient multi-sensor data are inductively learned through graph feature transformation and stepwise graph convolution. Finally, spatio-temporal features are extracted by a gated graph attention network (GGAT) to accomplish RUL prediction. Two case studies demonstrate the superiority of the proposed method over state-of-the-art RUL prediction methods.

Suggested Citation

  • Wang, Yu & Peng, Shangjing & Wang, Hong & Zhang, Mingquan & Cao, Hongrui & Ma, Liwei, 2025. "Remaining useful life prediction based on graph feature attention networks with missing multi-sensor features," Reliability Engineering and System Safety, Elsevier, vol. 258(C).
  • Handle: RePEc:eee:reensy:v:258:y:2025:i:c:s095183202500105x
    DOI: 10.1016/j.ress.2025.110902
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202500105X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110902?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yajing & Wang, Zhijian & Li, Feng & Li, Yanfeng & Zhang, Xiaohong & Shi, Hui & Dong, Lei & Ren, Weibo, 2024. "An ensembled remaining useful life prediction method with data fusion and stage division," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    2. Listou Ellefsen, André & Bjørlykhaug, Emil & Æsøy, Vilmar & Ushakov, Sergey & Zhang, Houxiang, 2019. "Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 240-251.
    3. Xiaojia Wang & Ting Huang & Keyu Zhu & Xibin Zhao, 2022. "LSTM-Based Broad Learning System for Remaining Useful Life Prediction," Mathematics, MDPI, vol. 10(12), pages 1-13, June.
    4. Wang, Weicheng & Chen, Jinglong & Zhang, Tianci & Liu, Zijun & Wang, Jun & Zhang, Xinwei & He, Shuilong, 2023. "An asymmetrical graph Siamese network for one-classanomaly detection of engine equipment with multi-source fusion," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    5. Zhengyang Fan & Wanru Li & Kuo-Chu Chang, 2023. "A Bidirectional Long Short-Term Memory Autoencoder Transformer for Remaining Useful Life Estimation," Mathematics, MDPI, vol. 11(24), pages 1-17, December.
    6. Zhu, Yongmeng & Wu, Jiechang & Wu, Jun & Liu, Shuyong, 2022. "Dimensionality reduce-based for remaining useful life prediction of machining tools with multisensor fusion," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    7. Wang, Yuan & Lei, Yaguo & Li, Naipeng & Yan, Tao & Si, Xiaosheng, 2023. "Deep multisource parallel bilinear-fusion network for remaining useful life prediction of machinery," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    8. Zhang, Jiusi & Jiang, Yuchen & Wu, Shimeng & Li, Xiang & Luo, Hao & Yin, Shen, 2022. "Prediction of remaining useful life based on bidirectional gated recurrent unit with temporal self-attention mechanism," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    9. Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    10. Yu Mo & Qianhui Wu & Xiu Li & Biqing Huang, 2021. "Remaining useful life estimation via transformer encoder enhanced by a gated convolutional unit," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1997-2006, October.
    11. Li, Naipeng & Gebraeel, Nagi & Lei, Yaguo & Fang, Xiaolei & Cai, Xiao & Yan, Tao, 2021. "Remaining useful life prediction based on a multi-sensor data fusion model," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    12. Li, Xiang & Ding, Qian & Sun, Jian-Qiao, 2018. "Remaining useful life estimation in prognostics using deep convolution neural networks," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 1-11.
    13. Li, Tianfu & Zhao, Zhibin & Sun, Chuang & Yan, Ruqiang & Chen, Xuefeng, 2021. "Hierarchical attention graph convolutional network to fuse multi-sensor signals for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kong, Ziqian & Jin, Xiaohang & Xu, Zhengguo & Chen, Zian, 2023. "A contrastive learning framework enhanced by unlabeled samples for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    2. Li, Yuanfu & Chen, Yao & Hu, Zhenchao & Zhang, Huisheng, 2023. "Remaining useful life prediction of aero-engine enabled by fusing knowledge and deep learning models," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    3. Zhang, Yuru & Su, Chun & Wu, Jiajun & Liu, Hao & Xie, Mingjiang, 2024. "Trend-augmented and temporal-featured Transformer network with multi-sensor signals for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    4. He, Yuxuan & Su, Huai & Zio, Enrico & Peng, Shiliang & Fan, Lin & Yang, Zhaoming & Yang, Zhe & Zhang, Jinjun, 2023. "A systematic method of remaining useful life estimation based on physics-informed graph neural networks with multisensor data," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Asgari, Ali & Si, Wujun & Wei, Wei & Krishnan, Krishna & Liu, Kunpeng, 2025. "Multivariate degradation modeling using generalized cauchy process and application in life prediction of dye-sensitized solar cells," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    6. Xu, Dan & Xiao, Xiaoqi & Liu, Jie & Sui, Shaobo, 2023. "Spatio-temporal degradation modeling and remaining useful life prediction under multiple operating conditions based on attention mechanism and deep learning," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    7. Xiong, Jiawei & Zhou, Jian & Ma, Yizhong & Zhang, Fengxia & Lin, Chenglong, 2023. "Adaptive deep learning-based remaining useful life prediction framework for systems with multiple failure patterns," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    8. Huang, Zhifu & Yang, Yang & Hu, Yawei & Ding, Xiang & Li, Xuanlin & Liu, Yongbin, 2023. "Attention-augmented recalibrated and compensatory network for machine remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    9. Chen, Xi & Wang, Hui & Lu, Siliang & Xu, Jiawen & Yan, Ruqiang, 2023. "Remaining useful life prediction of turbofan engine using global health degradation representation in federated learning," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    10. Lin, Yan-Hui & Chang, Liang & Guan, Lu-Xin, 2024. "Enhanced stochastic recurrent hybrid model for RUL Predictions via Semi-supervised learning," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    11. Kamei, Sayaka & Taghipour, Sharareh, 2023. "A comparison study of centralized and decentralized federated learning approaches utilizing the transformer architecture for estimating remaining useful life," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    12. Costa, Nahuel & Sánchez, Luciano, 2022. "Variational encoding approach for interpretable assessment of remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    13. Lyu, Dongzhen & Niu, Guangxing & Liu, Enhui & Zhang, Bin & Chen, Gang & Yang, Tao & Zio, Enrico, 2022. "Time space modelling for fault diagnosis and prognosis with uncertainty management: A general theoretical formulation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    14. Wu, Xia & Liu, Zhiwen & Wang, Lei, 2025. "Spatio-temporal degradation model with graph neural network and structured state space model for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    15. A., Faizanbasha & Rizwan, U., 2025. "Deep learning-stochastic ensemble for RUL prediction and predictive maintenance with dynamic mission abort policies," Reliability Engineering and System Safety, Elsevier, vol. 259(C).
    16. Chen, Chong & Liu, Ying & Sun, Xianfang & Cairano-Gilfedder, Carla Di & Titmus, Scott, 2021. "An integrated deep learning-based approach for automobile maintenance prediction with GIS data," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    17. Zhu, Qixiang & Zhou, Zheng & Li, Yasong & Yan, Ruqiang, 2024. "Contrastive BiLSTM-enabled Health Representation Learning for Remaining Useful Life Prediction," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    18. Zhou, Maohui & Li, Yanjun & Cao, Yuyuan & Ma, Xinyu & Xu, Zhenteng, 2025. "Physics-informed spatio-temporal hybrid neural networks for predicting remaining useful life in aircraft engine," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    19. de Pater, Ingeborg & Reijns, Arthur & Mitici, Mihaela, 2022. "Alarm-based predictive maintenance scheduling for aircraft engines with imperfect Remaining Useful Life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    20. Cai, Xiao & Zhang, Dingcheng & Yu, Yang & Xie, Min, 2025. "Knowledge embedded spatial–temporal graph convolutional networks for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:258:y:2025:i:c:s095183202500105x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.