IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v257y2025ipas0951832025000080.html
   My bibliography  Save this article

An efficient method for network connectivity reliability computation considering correlation of components

Author

Listed:
  • Lu, Zhao-Hui
  • Wang, Xiao-Wen
  • Liu, Liang
  • Zhang, Xuan-Yi
  • Li, Chun-Qing

Abstract

Network connectivity reliability is imperative to lifeline systems, such as water distribution systems, and transportation networks. However, the computation of network connectivity reliability is highly complicated due to the large number of binary-stated network components, the diversity of post-hazard network topologies, and the correlation among network component failures. This paper presents an efficient method, integrated with Monte Carlo simulation (MCS), for computing network connectivity reliability specifically for binary-stated component networks, taking into account failure correlations. In particular, a concise transformation method for correlated discrete Bernoulli distribution is developed, enabling the capture of critical safe-failed states of network components as well as the conversion into independent standard normal space. The proposed method is then combined with an efficient shortest path search method to determine whether the network is connected or not, facilitating the computation of connectivity reliability for large-scale and dense networks. The results of examples show that the proposed method is more accurate and efficient than existing methods, and it can also obtain the influence range of component failure correlation on connectivity reliability. For disaster response and management of large, dense lifeline networks, the proposed method has significant advantages in providing fast and accurate assessments.

Suggested Citation

  • Lu, Zhao-Hui & Wang, Xiao-Wen & Liu, Liang & Zhang, Xuan-Yi & Li, Chun-Qing, 2025. "An efficient method for network connectivity reliability computation considering correlation of components," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
  • Handle: RePEc:eee:reensy:v:257:y:2025:i:pa:s0951832025000080
    DOI: 10.1016/j.ress.2025.110805
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025000080
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110805?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Shuliang & Guo, Zhaoyang & Huang, Xiaodi & Zhang, Jianhua, 2024. "A three-stage model of quantifying and analyzing power network resilience based on network theory," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Shen, Yi & Yang, Huang & Ren, Gang & Ran, Bin, 2024. "Model cascading overload failure and dynamic vulnerability analysis of facility network of metro station," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    3. Yu, Juanya & Sharma, Neetesh & Gardoni, Paolo, 2024. "Functional connectivity analysis for modeling flow in infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    4. Xu, Xiu-Zhen & Zhou, Run-Hui & Wu, Guo-Lin & Niu, Yi-Feng, 2024. "Evaluating the transmission distance-constrained reliability for a multi-state flow network," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    5. Shi, Yan & Behrensdorf, Jasper & Zhou, Jiayan & Hu, Yue & Broggi, Matteo & Beer, Michael, 2024. "Network reliability analysis through survival signature and machine learning techniques," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    6. He, Jun, 2021. "An extended recursive decomposition algorithm for dynamic seismic reliability evaluation of lifeline networks with dependent component failures," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. Wu, Baichao & Sun, Long, 2024. "A novel layer-by-layer recursive decomposition algorithm for calculation of network reliability," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    8. Stern, R.E. & Song, J. & Work, D.B., 2017. "Accelerated Monte Carlo system reliability analysis through machine-learning-based surrogate models of network connectivity," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 1-9.
    9. Hosseini, Yaser & Mohammadi, Reza Karami & Yang, Tony Y., 2024. "A comprehensive approach in post-earthquake blockage prediction of urban road network and emergency resilience optimization," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    10. Kim, Youngsuk & Kang, Won-Hee, 2013. "Network reliability analysis of complex systems using a non-simulation-based method," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 80-88.
    11. Zhang, Yue & Weng, Wenguo & Qi, Qingjie, 2023. "Resilience assessment and enhancement methods of large-scale gas distribution networks against disruptions due to earthquakes," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    12. Zhang, Jianhua & Min, Qinjie & Zhou, Yu & Cheng, Lilai, 2024. "Vulnerability assessments of urban rail transit networks based on extended coupled map lattices with evacuation capability," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    13. Zhang, Chenwei & Wang, Ying & Zheng, Tao & Wang, Chen & Zhang, Kaifeng, 2024. "Identifying critical weak points of power-gas integrated energy system based on complex network theory," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dui, Hongyan & Zhang, Huanqi & Dong, Xinghui & Zhang, Songru, 2024. "Cascading failure and resilience optimization of unmanned vehicle distribution networks in IoT," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    2. Du, Jianwei & Cui, Jialei & Ren, Gang & Thompson, Russell G. & Zhang, Lele, 2025. "Cascading failures and resilience evolution in urban road traffic networks with bounded rational route choice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 664(C).
    3. Deng, Ye & Wang, Zhigang & Xiao, Yu & Shen, Xiaoda & Kurths, Jürgen & Wu, Jun, 2025. "Spatial network disintegration based on spatial coverage," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    4. Li, Xinxin & Huang, Wencheng, 2025. "Resilience quantification method of high-speed railway train diagram under operation section interference: Strategies and practices," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    5. Barati, Hojjat & Yazici, Anil & Almotahari, Amirmasoud, 2024. "A methodology for ranking of critical links in transportation networks based on criticality score distributions," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    6. Wang, Jie & Zhang, Yangyi & Li, Shunlong & Xu, Wencheng & Jin, Yao, 2024. "Directed network-based connectivity probability evaluation for urban bridges," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    7. Dharmaraja, S. & Vinayak, Resham & Trivedi, Kishor S., 2016. "Reliability and survivability of vehicular ad hoc networks: An analytical approach," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 28-38.
    8. Zhang, Chenwei & Wang, Ying & Zheng, Tao & Zhang, Kaifeng, 2024. "Complex network theory-based optimization for enhancing resilience of large-scale multi-energy System11The short version of the paper was presented at CUE2023. This paper is a substantial extension of," Applied Energy, Elsevier, vol. 370(C).
    9. Chang, Ping-Chen, 2024. "A path-based simulation approach for multistate flow network reliability estimation without using boundary points," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    10. Zhao, Yixin & Cai, Baoping & Cozzani, Valerio & Liu, Yiliu, 2025. "Failure dependence and cascading failures: A literature review and research opportunities," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    11. Di Maio, Francesco & Pettorossi, Chiara & Zio, Enrico, 2023. "Entropy-driven Monte Carlo simulation method for approximating the survival signature of complex infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    12. Du, Jianwei & Ren, Gang & Cui, Jialei & Cao, Qi & Wang, Jian & Wu, Chenyang & Zhang, Jiefei, 2025. "Monitoring of operational resilience on urban road network: A Shaoxing case study," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    13. Nazarizadeh, Farzaneh & Alemtabriz, Akbar & Zandieh, Mostafa & Raad, Abbas, 2022. "An analytical model for reliability assessment of the rail system considering dependent failures (case study of Iranian railway)," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    14. Krupenev, Dmitry & Boyarkin, Denis & Iakubovskii, Dmitrii, 2020. "Improvement in the computational efficiency of a technique for assessing the reliability of electric power systems based on the Monte Carlo method," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    15. Kawahara, Jun & Sonoda, Koki & Inoue, Takeru & Kasahara, Shoji, 2019. "Efficient construction of binary decision diagrams for network reliability with imperfect vertices," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 142-154.
    16. Bistouni, Fathollah & Jahanshahi, Mohsen, 2014. "Analyzing the reliability of shuffle-exchange networks using reliability block diagrams," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 97-106.
    17. Li, Jian & Dueñas-Osorio, Leonardo & Chen, Changkun & Shi, Congling, 2016. "Connectivity reliability and topological controllability of infrastructure networks: A comparative assessment," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 24-33.
    18. Liang, Huangbin & Xie, Qiang, 2025. "Probabilistic seismic risk analysis of electrical substations considering equipment-to-equipment seismic failure correlations," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    19. Xu, Jun & Kong, Fan, 2018. "A new unequal-weighted sampling method for efficient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 94-102.
    20. Bansal, Parth & Zheng, Zhuoyuan & Shao, Chenhui & Li, Jingjing & Banu, Mihaela & Carlson, Blair E & Li, Yumeng, 2022. "Physics-informed machine learning assisted uncertainty quantification for the corrosion of dissimilar material joints," Reliability Engineering and System Safety, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:257:y:2025:i:pa:s0951832025000080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.