IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v248y2024ics0951832024002540.html
   My bibliography  Save this article

Estimating nonlinear wind-induced response of roof cable nets by aeroelastic experiments and ML modeling

Author

Listed:
  • Rizzo, Fabio
  • Pistol, Aleksander
  • Caracoglia, Luca

Abstract

The paper examines the structural engineering challenges related to the assessment of the wind-induced vertical displacements of lightweight, hyperbolic-paraboloid cable-supported membrane roofs. Analysis and comparisons are conducted using three distinct methods for calculating the roof vertical, out-of-plane displacements. Finite element method (FEM) analysis is employed using: (i) estimated static nodal forces obtained from wind pressure coefficients determined by aerodynamic wind tunnel tests on a rigid building model, and (ii) loads found from wind pressure coefficients, estimated through machine learning (ML) methods, and (iii) measured roof response found from aeroelastic wind tunnel tests on a flexible model. The study examines three different roof geometries (square, rectangular and circular) and two distinct membrane curvatures for each geometry. Furthermore, wind directionality (three mean-wind incidence angles) and Reynolds number effects (seven mean wind velocities) are studied. Comparisons show that the non-linear FEM analysis, based on estimated static wind loads, underestimates the roof displacements at the roof center, compared to the direct measurements on the aeroelastic model. The main contribution of the study consists of a novel application of ML models, and Artificial Neural Networks (ANNs) in particular, which are employed to correct roof displacement estimations, found by simplified aerodynamic test pressure measurements on rigid roof models. The goal is to better describe the complex fluid-structure interaction of the roof membranes, which can only be achieved by direct aeroelastic tests that are difficult to design and execute. Finally, the study demonstrates that ANNs can be used not only for the preliminary design of the full-scale structure but also for construction of wind tunnel scale models.

Suggested Citation

  • Rizzo, Fabio & Pistol, Aleksander & Caracoglia, Luca, 2024. "Estimating nonlinear wind-induced response of roof cable nets by aeroelastic experiments and ML modeling," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:reensy:v:248:y:2024:i:c:s0951832024002540
    DOI: 10.1016/j.ress.2024.110183
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024002540
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110183?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:248:y:2024:i:c:s0951832024002540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.