IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v248y2024ics0951832024002473.html
   My bibliography  Save this article

A Bayesian design method for monopropellant engine system reliability qualification test plan

Author

Listed:
  • Wang, Bo
  • Jiang, Ping
  • Guo, Bo

Abstract

During the development of systems, traditional System Reliability Qualification Testing (SRQT) is typically utilized to assess whether they meet predefined reliability standards. However, this approach often demands substantial sample sizes and prolonged test durations, rendering it impractical for costly, highly reliable systems with limited sample sizes. Additionally, the extended test duration may not align with practical time-to-market pressures or budget constraints. To overcome these challenges, the study integrates subsystem data into the monopropellant engine system RQT plan's design. By leveraging Monte-Carlo simulation, subsystem data is modeled to create a system parameter distribution, enabling the formulation of SRQT plans based on posterior risks. An example of a monopropellant liquid rocket engine system is provided to demonstrate the advantages and applications of the proposed methodology.

Suggested Citation

  • Wang, Bo & Jiang, Ping & Guo, Bo, 2024. "A Bayesian design method for monopropellant engine system reliability qualification test plan," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:reensy:v:248:y:2024:i:c:s0951832024002473
    DOI: 10.1016/j.ress.2024.110173
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024002473
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110173?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:248:y:2024:i:c:s0951832024002473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.