IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v240y2023ics0951832023004660.html
   My bibliography  Save this article

Stochastic collocation enhanced line sampling method for reliability analysis

Author

Listed:
  • Wei, Ning
  • Lu, Zhenzhou
  • Hu, Yingshi

Abstract

The stochastic collocation enhanced line sampling (SC-LS) method for reliability analysis is proposed in this paper, which is the point estimation strategy within the framework of line sampling. Instead of utilizing the direct random sampling strategy to estimate the integration of the one-dimensional conditional failure probability function in the traditional line sampling approach, the proposed SC-LS method evaluate the integration directly by Gaussian quadrature combined with the univariate multiplicative dimensionality reduction method (U-MDRM) or bivariate multiplicative dimensionality reduction method (B-MDRM), and the failure probability is estimated as the weighted sum of the one-dimensional conditional failure probabilities at the generated Gaussian quadrature grids. The superiority of proposed SC-LS method is demonstrated by several numerical examples and finite element examples, and the proposed method has two advantages, one is that it avoids the random sampling in one-dimension-reduced space, which is required by traditional line sampling approach, hence no variability exists in the estimate of failure probability. The other one is that it can be used for the small failure probability problems and is much less sensitive to the choice of importance direction.

Suggested Citation

  • Wei, Ning & Lu, Zhenzhou & Hu, Yingshi, 2023. "Stochastic collocation enhanced line sampling method for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:reensy:v:240:y:2023:i:c:s0951832023004660
    DOI: 10.1016/j.ress.2023.109552
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023004660
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109552?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Cao & Zhang, Hao & Li, Quanwang, 2019. "Moment-based evaluation of structural reliability," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 38-45.
    2. Zhang, Xiaobo & Lu, Zhenzhou & Cheng, Kai, 2022. "Cross-entropy-based directional importance sampling with von Mises-Fisher mixture model for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hussain, Muhammad & Zhang, Tieling, 2025. "Machine learning-based outlier detection for pipeline in-line inspection data," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Yu & Ma, Yafei & Huang, Ke & Wang, Lei & Zhang, Jianren, 2024. "Digital twin Bayesian entropy framework for corrosion fatigue life prediction and calibration of bridge suspender," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    2. Luo, Changqi & Zhu, Shun-Peng & Keshtegar, Behrooz & Niu, Xiaopeng & Taylan, Osman, 2023. "An enhanced uniform simulation approach coupled with SVR for efficient structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    3. He, Wanxin & Wang, Yiyuan & Li, Gang & Zhou, Jinhang, 2024. "A novel maximum entropy method based on the B-spline theory and the low-discrepancy sequence for complex probability distribution reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. Chengning Zhou & Ning-Cong Xiao & Ming J Zuo & Xiaoxu Huang, 2020. "AK-PDF: An active learning method combining kriging and probability density function for efficient reliability analysis," Journal of Risk and Reliability, , vol. 234(3), pages 536-549, June.
    5. Zhao, Enyong & Wang, Qihan & Alamdari, Mehrisadat Makki & Gao, Wei, 2023. "Advanced virtual model assisted most probable point capturing method for engineering structures," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    6. Jouan, Gabriel & Arnardottir, Erna Sif & Islind, Anna Sigridur & Óskarsdóttir, María, 2024. "An algorithmic approach to identification of gray areas: Analysis of sleep scoring expert ensemble non agreement areas using a multinomial mixture model," European Journal of Operational Research, Elsevier, vol. 317(2), pages 352-365.
    7. Yu, Shui & Ren, Yuyao & Wu, Xiao & Guo, Peng & Li, Yun, 2024. "Dynamic pruning-based Bayesian support vector regression for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    8. Chiron, Marie & Genest, Christian & Morio, Jérôme & Dubreuil, Sylvain, 2023. "Failure probability estimation through high-dimensional elliptical distribution modeling with multiple importance sampling," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    9. Nguyen, Phong T.T. & Manuel, Lance, 2024. "Uncertainty quantification in low-probability response estimation using sliced inverse regression and polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    10. Zhang, Zhi-Gang & Hu, Xiao & Liu, Zhao-Ting & Zhao, Lu-Tao, 2021. "Multi-attribute decision making: An innovative method based on the dynamic credibility of experts," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    11. Li, Luxin & Chen, Guohai & Fang, Mingxuan & Yang, Dixiong, 2021. "Reliability analysis of structures with multimodal distributions based on direct probability integral method," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    12. Mehni, Moien Barkhori & Mehni, Mohammad Barkhori, 2023. "Reliability analysis with cross-entropy based adaptive Markov chain importance sampling and control variates," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    13. Mathpati, Yogesh Chandrakant & More, Kalpesh Sanjay & Tripura, Tapas & Nayek, Rajdip & Chakraborty, Souvik, 2023. "MAntRA: A framework for model agnostic reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    14. Li, Guosheng & Ma, Shuaichao & Zhang, Dequan & Yang, Leping & Zhang, Weihua & Wu, Zeping, 2024. "An efficient sequential anisotropic RBF reliability analysis method with fast cross-validation and parallelizability," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    15. Xu, Jun & Song, Jinheng & Yu, Quanfu & Kong, Fan, 2023. "Generalized distribution reconstruction based on the inversion of characteristic function curve for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:240:y:2023:i:c:s0951832023004660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.