IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v216y2021ics0951832021004816.html
   My bibliography  Save this article

Seismic fragility analysis of nuclear power plants considering structural parameter uncertainty

Author

Listed:
  • Zhao, Yan-Gang
  • Qin, Miao-Jun
  • Lu, Zhao-Hui
  • Zhang, Long-Wen

Abstract

This paper proposes a new method for seismic fragility analysis of nuclear power plants (NPPs) considering the uncertainty sources of both ground motions and structural parameters. Based on the conventional seismic fragility model that only contains the uncertainty of ground motions, seismic fragility analysis conditioned on a specific seismic intensity is probabilistically reformulated by further incorporating the uncertainty of structural parameters. To improve the efficiency of the analysis, a point estimation-assisted incremental dynamic analysis was developed for evaluating the seismic fragility model including the uncertainty of structural parameter. The accuracy and efficiency of the proposed method were demonstrated by a single-degree-of-freedom system, where Monte Carlo simulation method is used for comparison. The seismic fragility based on the finite element model of an AP1000 NPP was analyzed using the proposed method. The results reveal that the safety of NPP structure would be overestimated without considering the uncertainty of structural parameter and the influence of the uncertainty of structural parameters on the seismic fragility of NPP presents an upward trend as the damage level increases. Furthermore, the sensitivity analysis of different structural parameters reveals that elastic module may have a dominant influence.

Suggested Citation

  • Zhao, Yan-Gang & Qin, Miao-Jun & Lu, Zhao-Hui & Zhang, Long-Wen, 2021. "Seismic fragility analysis of nuclear power plants considering structural parameter uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:reensy:v:216:y:2021:i:c:s0951832021004816
    DOI: 10.1016/j.ress.2021.107970
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021004816
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107970?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Yan-Gang & Li, Pei-Pei & Lu, Zhao-Hui, 2018. "Efficient evaluation of structural reliability under imperfect knowledge about probability distributions," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 160-170.
    2. Borgonovo, E. & Zentner, I. & Pellegri, A. & Tarantola, S. & de Rocquigny, E., 2013. "On the importance of uncertain factors in seismic fragility assessment," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 66-76.
    3. Kwag, Shinyoung & Park, Junhee & Choi, In-Kil, 2020. "Development of efficient complete-sampling-based seismic PSA method for nuclear power plant," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    4. Zhou, Taotao & Modarres, Mohammad & Droguett, Enrique López, 2021. "Multi-unit nuclear power plant probabilistic risk assessment: A comprehensive survey," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    5. Choe, Do-Eun & Gardoni, Paolo & Rosowsky, David & Haukaas, Terje, 2008. "Probabilistic capacity models and seismic fragility estimates for RC columns subject to corrosion," Reliability Engineering and System Safety, Elsevier, vol. 93(3), pages 383-393.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xinbo & Gong, Jinxin, 2024. "Probabilistic evaluation of the leak-tightness function of the nuclear containment structure subjected to internal pressure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Bhuyan, Kasturi & Sharma, Hrishikesh, 2024. "Probabilistic capacity models and fragility estimate for NRC and UHSC panels subjected to contact blast," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    3. Kishore, Katchalla Bala & Gangolu, Jaswanth & Ramancha, Mukesh K. & Bhuyan, Kasturi & Sharma, Hrishikesh, 2022. "Performance-based probabilistic deflection capacity models and fragility estimation for reinforced concrete column and beam subjected to blast loading," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    4. Zhang, Qiang & Zhao, Yan-Gang & Kolozvari, Kristijan & Xu, Lei, 2022. "Reliability analysis of reinforced concrete structure against progressive collapse," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    5. Dhulipala, Somayajulu L.N. & Shields, Michael D. & Chakroborty, Promit & Jiang, Wen & Spencer, Benjamin W. & Hales, Jason D. & Labouré, Vincent M. & Prince, Zachary M. & Bolisetti, Chandrakanth & Che, 2022. "Reliability estimation of an advanced nuclear fuel using coupled active learning, multifidelity modeling, and subset simulation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    6. Zheng, Zhi & Tian, Aonan & Pan, Xiaolan & Ji, Duofa & Wang, Yong, 2024. "The damage-based fragility analysis and probabilistic safety assessment of containment under internal pressure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    7. Sun, Xiaojun & Feng, Ding & Zhang, Qiang & Lin, Sheng, 2024. "Optimal siting of substations of traction power supply systems considering seismic risk," Reliability Engineering and System Safety, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Zhi & Tian, Aonan & Pan, Xiaolan & Ji, Duofa & Wang, Yong, 2024. "The damage-based fragility analysis and probabilistic safety assessment of containment under internal pressure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Pang, Rui & Zai, Dezhi & Xu, Bin & Liu, Jun & Zhao, Chunfeng & Fan, Qunying & Chen, Yuting, 2023. "Stochastic dynamic and reliability analysis of AP1000 nuclear power plants via DPIM subjected to mainshock-aftershock sequences," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Vishwanath, B Sharanbaswa & Banerjee, Swagata, 2023. "Considering uncertainty in corrosion process to estimate life-cycle seismic vulnerability and risk of aging bridge piers," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    4. Morshedi, Mohamad Ali & Kashani, Hamed, 2022. "Assessment of vulnerability reduction policies: Integration of economic and cognitive models of decision-making," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    5. Lilli, Giordano & Sanavia, Matteo & Oboe, Roberto & Vianello, Chiara & Manzolaro, Mattia & De Ruvo, Pasquale Luca & Andrighetto, Alberto, 2024. "A semi-quantitative risk assessment of remote handling operations on the SPES Front-End based on HAZOP-LOPA," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    6. Chien-Kuo Chiu & Fung-Chung Tu & Cheng-Yu Fan, 2015. "Risk assessment of environmental corrosion for reinforcing steel bars embedded in concrete in Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 581-611, January.
    7. Yan Liang & Jia-lei Yan & Jun-lei Wang & Peng Zhang & Bao-jie He, 2019. "Analysis on the Time-Varying Fragility of Offshore Concrete Bridge," Complexity, Hindawi, vol. 2019, pages 1-22, January.
    8. He, Jingjing & Huang, Min & Wang, Wei & Wang, Shaohua & Guan, Xuefei, 2021. "An asymptotic stochastic response surface approach to reliability assessment under multi-source heterogeneous uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. Ghosh, Jayadipta & Sood, Piyush, 2016. "Consideration of time-evolving capacity distributions and improved degradation models for seismic fragility assessment of aging highway bridges," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 197-218.
    10. Gangolu, Jaswanth & Kumar, Ajay & Bhuyan, Kasturi & Sharma, Hrishikesh, 2022. "Probabilistic demand models and performance-based fragility estimates for concrete protective structures subjected to missile impact," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    11. Liu, Jiaxin & Yu, Deping & Yang, Taibo & Liu, Caixue & Wang, Guangjin & Liu, Xiaoming, 2023. "Discovering the causes for the change of the vibration characteristics of the core support barrel in PWR nuclear power plants: A combined investigation based on ex-core neutron noise analysis and nume," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    12. Sejin Baek & Gyunyoung Heo, 2021. "Application of Dynamic Fault Tree Analysis to Prioritize Electric Power Systems in Nuclear Power Plants," Energies, MDPI, vol. 14(14), pages 1-17, July.
    13. Yang, Yiming & Peng, Jianxin & Cai, C.S. & Zhou, Yadong & Wang, Lei & Zhang, Jianren, 2022. "Time-dependent reliability assessment of aging structures considering stochastic resistance degradation process," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    14. DeJesus Segarra, Jonathan & Bensi, Michelle & Modarres, Mohammad, 2023. "Multi-unit seismic probabilistic risk assessment: A Bayesian network perspective," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    15. Byun, Ji-Eun & Zwirglmaier, Kilian & Straub, Daniel & Song, Junho, 2019. "Matrix-based Bayesian Network for efficient memory storage and flexible inference," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 533-545.
    16. Kwag, Shinyoung & Park, Junhee & Choi, In-Kil, 2020. "Development of efficient complete-sampling-based seismic PSA method for nuclear power plant," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    17. Zhou, Daoqing & Sun, C.P. & Du, Yi-Mu & Guan, Xuefei, 2022. "Degradation and reliability of multi-function systems using the hazard rate matrix and Markovian approximation," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    18. Li, Luyi & Lu, Zhenzhou & Wu, Danqing, 2016. "A new kind of sensitivity index for multivariate output," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 123-131.
    19. Tatsuya Sakurahara & Seyed Reihani & Ernie Kee & Zahra Mohaghegh, 2020. "Global importance measure methodology for integrated probabilistic risk assessment," Journal of Risk and Reliability, , vol. 234(2), pages 377-396, April.
    20. Borgonovo, Emanuele & Aliee, Hananeh & Glaß, Michael & Teich, Jürgen, 2016. "A new time-independent reliability importance measure," European Journal of Operational Research, Elsevier, vol. 254(2), pages 427-442.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:216:y:2021:i:c:s0951832021004816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.