IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v212y2021ics0951832021001319.html
   My bibliography  Save this article

Mixed failure-driven and shock-driven mission aborts in heterogeneous systems with arbitrary structure

Author

Listed:
  • Levitin, Gregory
  • Xing, Liudong
  • Xiang, Yanping
  • Dai, Yuanshun

Abstract

Failure-driven and condition-driven mission abort and rescue have recently received intensive research attentions in the system reliability field. Little work has addressed both types of aborts simultaneously and the existing model is limited to the special series system structure only. This paper advances the state of the art by modeling mixed failure-driven and condition-driven (specifically, shock-driven) mission aborts in systems with arbitrary system structures and heterogeneous elements. The system performs a primary mission (PM) in random environments exposed to the Poisson process of external shocks. Different system elements have different resistance to shocks, and the shock resistance deteriorates with the number of experienced shocks. A rescue procedure (RP) is triggered to possibly survive the system when a specified number of shocks take place (condition/shock-driven) or when failures of some system elements caused by shocks do not allow continuing the PM execution but allow performing the RP (failure-driven). A universal probabilistic approach is suggested for evaluating the mission success probability (MSP) and system survival probability (SSP) of the considered system. Two example systems (an electric feeder heating system and a smart farm wireless sensor network system) are analyzed. The proposed approach and its applications are demonstrated in determining the optimal mission abort policy that maximizes MSP subject to the SSP constraint or minimizes the expected cost of losses, in the element shock resistance sensitivity analysis, as well as in finding the optimal shock protection replacement solution that minimizes the total cost.

Suggested Citation

  • Levitin, Gregory & Xing, Liudong & Xiang, Yanping & Dai, Yuanshun, 2021. "Mixed failure-driven and shock-driven mission aborts in heterogeneous systems with arbitrary structure," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
  • Handle: RePEc:eee:reensy:v:212:y:2021:i:c:s0951832021001319
    DOI: 10.1016/j.ress.2021.107581
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021001319
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107581?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "State-based mission abort policies for multistate systems," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    2. Levitin, Gregory & Finkelstein, Maxim & Li, Yan-Feng, 2020. "Balancing mission success probability and risk of system loss by allocating redundancy in systems operating with a rescue option," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    3. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2018. "Mission abort policy balancing the uncompleted mission penalty and system loss risk," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 194-201.
    4. Zhu, Xiaoning & Yan, Rui & Peng, Rui & Zhang, Zhongxin, 2020. "Optimal routing, loading and aborting of UAVs executing both visiting tasks and transportation tasks," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    5. Wu, Shaomin & Castro, Inma T., 2020. "Maintenance policy for a system with a weighted linear combination of degradation processes," European Journal of Operational Research, Elsevier, vol. 280(1), pages 124-133.
    6. Levitin, Gregory & Finkelstein, Maxim, 2018. "Optimal mission abort policy for systems in a random environment with variable shock rate," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 11-17.
    7. Gregory Levitin & Maxim Finkelstein, 2018. "Optimal Mission Abort Policy for Systems Operating in a Random Environment," Risk Analysis, John Wiley & Sons, vol. 38(4), pages 795-803, April.
    8. Qiu, Qingan & Cui, Lirong, 2019. "Optimal mission abort policy for systems subject to random shocks based on virtual age process," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 11-20.
    9. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "Mission abort policy optimization for series systems with overlapping primary and rescue subsystems operating in a random environment," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    10. Levitin, Gregory & Xing, Liudong & Haim, Hanoch Ben & Dai, Yuanshun, 2019. "Optimal structure of series system with 1-out-of-n warm standby subsystems performing operation and rescue functions," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 523-531.
    11. Gregory Levitin, 2005. "Reliability of linear multistate multiple sliding window systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(3), pages 212-223, April.
    12. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2018. "Co-optimization of state dependent loading and mission abort policy in heterogeneous warm standby systems," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 151-158.
    13. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2020. "Optimal aborting rule in multi-attempt missions performed by multicomponent systems," European Journal of Operational Research, Elsevier, vol. 283(1), pages 244-252.
    14. Zhao, Xian & Chai, Xiaofei & Sun, Jinglei & Qiu, Qingan, 2021. "Optimal bivariate mission abort policy for systems operate in random shock environment," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    15. Qiu, Qingan & Cui, Lirong & Wu, Bei, 2020. "Dynamic mission abort policy for systems operating in a controllable environment with self-healing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    16. Xiao, Hui & Zhang, Yiyun & Xiang, Yisha & Peng, Rui, 2020. "Optimal design of a linear sliding window system with consideration of performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    17. Levitin, Gregory & Xing, Liudong & Luo, Liang, 2019. "Influence of failure propagation on mission abort policy in heterogeneous warm standby systems," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 29-38.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Mission aborting and system rescue for multi-state systems with arbitrary structure," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    2. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Optimal mission aborting in multistate systems with storage," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Mission aborting and system rescue for multi-state systems with arbitrary structure," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    2. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Optimal mission aborting in multistate systems with storage," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    3. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Using kamikaze components in multi-attempt missions with abort option," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    4. Zhao, Xian & Liu, Haoran & Wu, Yaguang & Qiu, Qingan, 2023. "Joint optimization of mission abort and system structure considering dynamic tasks," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    5. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2021. "Optimal mission abort policies for repairable multistate systems performing multi-attempt mission," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    6. Ke Chen & Xian Zhao & Qingan Qiu, 2022. "Optimal Task Abort and Maintenance Policies Considering Time Redundancy," Mathematics, MDPI, vol. 10(9), pages 1-16, April.
    7. Zhao, Xian & Fan, Yu & Qiu, Qingan & Chen, Ke, 2021. "Multi-criteria mission abort policy for systems subject to two-stage degradation process," European Journal of Operational Research, Elsevier, vol. 295(1), pages 233-245.
    8. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2024. "Optimal task aborting and sequencing in time constrained multi-task multi-attempt missions," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    9. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Optimal aborting policy for shock exposed missions with random rescue time," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    10. Liu, Lujie & Yang, Jun & Yan, Bingxin, 2024. "A dynamic mission abort policy for transportation systems with stochastic dependence by deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    11. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Optimal task sequencing and aborting in multi-attempt multi-task missions with a limited number of attempts," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    12. Zhao, Xian & Chai, Xiaofei & Sun, Jinglei & Qiu, Qingan, 2021. "Joint optimization of mission abort and component switching policies for multistate warm standby systems," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    13. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2021. "Optimal abort rules for additive multi-attempt missions," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    14. Zhao, Xian & Dai, Ying & Qiu, Qingan & Wu, Yaguang, 2022. "Joint optimization of mission aborts and allocation of standby components considering mission loss," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    15. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2021. "Dynamic task distribution balancing primary mission work and damage reduction work in parallel systems exposed to shocks," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    16. Cheng, Guoqing & Li, Ling & Shangguan, Chunxia & Yang, Nan & Jiang, Bo & Tao, Ningrong, 2023. "Optimal joint inspection and mission abort policy for a partially observable system," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    17. Zhao, Xian & Chai, Xiaofei & Sun, Jinglei & Qiu, Qingan, 2021. "Optimal bivariate mission abort policy for systems operate in random shock environment," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    18. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2021. "Optimal inspections and mission abort policies for multistate systems," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    19. Qiu, Qingan & Kou, Meng & Chen, Ke & Deng, Qiao & Kang, Fengming & Lin, Cong, 2021. "Optimal stopping problems for mission oriented systems considering time redundancy," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    20. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2021. "Optimal aborting strategy for three-phase missions performed by multiple units," Reliability Engineering and System Safety, Elsevier, vol. 208(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:212:y:2021:i:c:s0951832021001319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.