IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v207y2021ics0951832020308474.html
   My bibliography  Save this article

A novel approach based on meta-modeling technique and time transformation function for reliability analysis of upgraded automotive components

Author

Listed:
  • Sohoin, Rodrigue
  • El Hami, Abdelkhalak
  • Guerin, Fabrice
  • Riahi, Hassen
  • Attaf, Djelali

Abstract

Early reliability estimation is still a challenging task. The paper presents a novel approach to deal with early reliability estimation of upgraded automotive components. The key idea is to combine reliability analysis based on efficient surrogate models and time transformation function principle. The surrogate model, built using Dimensional Decomposition Method and projection throughout a Lagrange polynomial basis, is used to substitute a time consuming implicit model initially used to compute the fatigue lifetime. The time transformation function is represented by a parametric power law model where the corresponding parameters are obtained through statistical analysis based on both numerical and experimental reliability results of a reference design. The reliability of an upgraded design is easily obtained by applying the time transformation function to the reliability estimation given by performing Monte-Carlo simulations on the surrogate model corresponding to the upgraded design. An application to a mechanical component, used in car seats, clearly illustrates the efficiency and the accuracy of the proposed approach.

Suggested Citation

  • Sohoin, Rodrigue & El Hami, Abdelkhalak & Guerin, Fabrice & Riahi, Hassen & Attaf, Djelali, 2021. "A novel approach based on meta-modeling technique and time transformation function for reliability analysis of upgraded automotive components," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:reensy:v:207:y:2021:i:c:s0951832020308474
    DOI: 10.1016/j.ress.2020.107357
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832020308474
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.107357?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bichon, Barron J. & McFarland, John M. & Mahadevan, Sankaran, 2011. "Efficient surrogate models for reliability analysis of systems with multiple failure modes," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1386-1395.
    2. Ahmed, Hussam & Chateauneuf, Alaa, 2014. "Optimal number of tests to achieve and validate product reliability," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 242-250.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Yanwen & Kohtz, Sara & Boakye, Jessica & Gardoni, Paolo & Wang, Pingfeng, 2023. "Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges," Reliability Engineering and System Safety, Elsevier, vol. 230(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Menz, Morgane & Gogu, Christian & Dubreuil, Sylvain & Bartoli, Nathalie & Morio, Jérôme, 2020. "Adaptive coupling of reduced basis modeling and Kriging based active learning methods for reliability analyses," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    2. Gaspar, B. & Teixeira, A.P. & Guedes Soares, C., 2017. "Adaptive surrogate model with active refinement combining Kriging and a trust region method," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 277-291.
    3. Rufo, M.J. & Martín, J. & Pérez, C.J., 2016. "A Bayesian negotiation model for quality and price in a multi-consumer context," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 132-141.
    4. Perrin, G., 2016. "Active learning surrogate models for the conception of systems with multiple failure modes," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 130-136.
    5. Fan Yang & Zhimin Xu, 2020. "Multidisciplinary reliability analysis of turbine blade with shape uncertainty by Kriging model and free-form deformation methods," Journal of Risk and Reliability, , vol. 234(4), pages 611-621, August.
    6. Wei, Pengfei & Liu, Fuchao & Tang, Chenghu, 2018. "Reliability and reliability-based importance analysis of structural systems using multiple response Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 183-195.
    7. Santosh B. Rane & Yahya A.M. Narvel & Niloy Khatua, 2017. "Development of mechanism for mounting secondary isolating contacts (SICs) in air circuit breakers (ACBs) with high operational reliability," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1816-1831, November.
    8. Sonal, S.D. & Ammanagi, S & Kanjilal, O & Manohar, C.S., 2018. "Experimental estimation of time variant system reliability of vibrating structures based on subset simulation with Markov chain splitting," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 55-68.
    9. Santosh B. Rane & Yahya A. M. Narvel, 2016. "Reliability assessment and improvement of air circuit breaker (ACB) mechanism by identifying and eliminating the root causes," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(1), pages 305-321, December.
    10. Wang, Zequn & Wang, Pingfeng, 2013. "A new approach for reliability analysis with time-variant performance characteristics," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 70-81.
    11. Jiang, Chen & Qiu, Haobo & Gao, Liang & Wang, Dapeng & Yang, Zan & Chen, Liming, 2020. "EEK-SYS: System reliability analysis through estimation error-guided adaptive Kriging approximation of multiple limit state surfaces," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    12. Yang, Seonghyeok & Lee, Mingyu & Lee, Ikjin, 2023. "A new sampling approach for system reliability-based design optimization under multiple simulation models," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    13. Ning-Cong Xiao & Libin Duan & Zhangchun Tang, 2017. "Surrogate-model-based reliability method for structural systems with dependent truncated random variables," Journal of Risk and Reliability, , vol. 231(3), pages 265-274, June.
    14. Fauriat, W. & Gayton, N., 2014. "AK-SYS: An adaptation of the AK-MCS method for system reliability," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 137-144.
    15. Palar, Pramudita Satria & Zuhal, Lavi Rizki & Shimoyama, Koji & Tsuchiya, Takeshi, 2018. "Global sensitivity analysis via multi-fidelity polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 175-190.
    16. Shashank Gupta & Srinivas Kota & Rajesh P. Mishra, 2016. "Modeling and evaluation of product quality at conceptual design stage," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(1), pages 163-177, December.
    17. Yang, Seonghyeok & Jo, Hwisang & Lee, Kyungeun & Lee, Ikjin, 2022. "Expected system improvement (ESI): A new learning function for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    18. Wang, Run-Zi & Gu, Hang-Hang & Zhu, Shun-Peng & Li, Kai-Shang & Wang, Ji & Wang, Xiao-Wei & Hideo, Miura & Zhang, Xian-Cheng & Tu, Shan-Tung, 2022. "A data-driven roadmap for creep-fatigue reliability assessment and its implementation in low-pressure turbine disk at elevated temperatures," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    19. Xiao, Ning-Cong & Zuo, Ming J. & Zhou, Chengning, 2018. "A new adaptive sequential sampling method to construct surrogate models for efficient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 330-338.
    20. Xiao, Mi & Zhang, Jinhao & Gao, Liang, 2020. "A system active learning Kriging method for system reliability-based design optimization with a multiple response model," Reliability Engineering and System Safety, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:207:y:2021:i:c:s0951832020308474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.