IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v189y2019icp435-444.html
   My bibliography  Save this article

Modular decomposition signature for systems with sequential failure effect

Author

Listed:
  • Jia, Xujie
  • Shen, Jingyuan
  • Xu, Fanqi
  • Ma, Ruihong
  • Song, Xueying

Abstract

System signature shows powerful features such as system reliability analysis, system design and system life comparison. The difficulty of signature calculation increases exponentially with the system architecture being more complex and the increase of the component number. For systems with sequential failure effect, we propose a novel approach to compute the signature. A concept called vector for number of modular failure orderings is defined and the modular decomposition signature method is proposed based on the vector. It is efficient for the signature computation of the systems with a large number of components. As applications of the method, the signature formulas of modular parallel systems, series systems and standby systems are investigated. The signature results are more concise compared with the previous methods. Numerical examples and applications are provided to demonstrate the proposed methodology.

Suggested Citation

  • Jia, Xujie & Shen, Jingyuan & Xu, Fanqi & Ma, Ruihong & Song, Xueying, 2019. "Modular decomposition signature for systems with sequential failure effect," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 435-444.
  • Handle: RePEc:eee:reensy:v:189:y:2019:i:c:p:435-444
    DOI: 10.1016/j.ress.2019.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018314303
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xing, Liudong & Shrestha, Akhilesh & Dai, Yuanshun, 2011. "Exact combinatorial reliability analysis of dynamic systems with sequence-dependent failures," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1375-1385.
    2. Marichal, Jean-Luc & Mathonet, Pierre & Navarro, Jorge & Paroissin, Christian, 2017. "Joint signature of two or more systems with applications to multistate systems made up of two-state components," European Journal of Operational Research, Elsevier, vol. 263(2), pages 559-570.
    3. Marichal, Jean-Luc & Mathonet, Pierre & Spizzichino, Fabio, 2015. "On modular decompositions of system signatures," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 19-32.
    4. Subhash Kochar & Hari Mukerjee & Francisco J. Samaniego, 1999. "The “signature” of a coherent system and its application to comparisons among systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(5), pages 507-523, August.
    5. Gaofeng Da & Maochao Xu & Ping Shing Chan, 2018. "An efficient algorithm for computing the signatures of systems with exchangeable components and applications," IISE Transactions, Taylor & Francis Journals, vol. 50(7), pages 584-595, July.
    6. Eryilmaz, Serkan & Kan, Cihangir & Akici, Fatih, 2009. "Consecutive k-within-m-out-of-n:F system with exchangeable components," MPRA Paper 26838, University Library of Munich, Germany.
    7. Da, Gaofeng & Chan, Ping Shing & Xu, Maochao, 2018. "On the signature of complex system: A decomposed approach," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1115-1123.
    8. Xiaohu Li & Zhengcheng Zhang, 2008. "Some stochastic comparisons of conditional coherent systems," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(6), pages 541-549, November.
    9. He Yi & Lirong Cui, 2018. "A new computation method for signature: Markov process method," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(5), pages 410-426, August.
    10. Francisco J. Samaniego & N. Balakrishnan & Jorge Navarro, 2009. "Dynamic signatures and their use in comparing the reliability of new and used systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(6), pages 577-591, September.
    11. Lee, Young-Joo & Song, Junho, 2012. "Finite-element-based system reliability analysis of fatigue-induced sequential failures," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 131-141.
    12. Marichal, Jean-Luc & Mathonet, Pierre, 2013. "Computing system signatures through reliability functions," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 710-717.
    13. Debasis Bhattacharya & Francisco J. Samaniego, 2010. "Estimating component characteristics from system failure‐time data," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(4), pages 380-389, June.
    14. Navarro, Jorge & Ruiz, Jose M. & Sandoval, Carlos J., 2005. "A note on comparisons among coherent systems with dependent components using signatures," Statistics & Probability Letters, Elsevier, vol. 72(2), pages 179-185, April.
    15. Serkan Eryilmaz & Altan Tuncel, 2016. "Generalizing the survival signature to unrepairable homogeneous multi‐state systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(8), pages 593-599, December.
    16. Marichal, Jean-Luc & Mathonet, Pierre, 2011. "Extensions of system signatures to dependent lifetimes: Explicit expressions and interpretations," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 931-936, May.
    17. Francisco J. Samaniego, 2007. "System Signatures and their Applications in Engineering Reliability," International Series in Operations Research and Management Science, Springer, number 978-0-387-71797-5, September.
    18. da Costa Bueno, Vanderlei, 2013. "A multistate monotone system signature," Statistics & Probability Letters, Elsevier, vol. 83(11), pages 2583-2591.
    19. Narayanaswamy Balakrishnan & Hon Ng & Jorge Navarro, 2011. "Exact nonparametric inference for component lifetime distribution based on lifetime data from systems with known signatures," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(3), pages 741-752.
    20. Dong, Qinglai & Cui, Lirong, 2019. "A study on stochastic degradation process models under different types of failure Thresholds," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 202-212.
    21. Samaniego, Francisco J. & Shaked, Moshe, 2008. "Systems with weighted components," Statistics & Probability Letters, Elsevier, vol. 78(6), pages 815-823, April.
    22. Serkan Eryilmaz, 2015. "Systems composed of two types of nonidentical and dependent components," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(5), pages 388-394, August.
    23. Da, Gaofeng & Zheng, Ben & Hu, Taizhong, 2012. "On computing signatures of coherent systems," Journal of Multivariate Analysis, Elsevier, vol. 103(1), pages 142-150, January.
    24. Parvardeh, A. & Balakrishnan, N., 2013. "Conditional residual lifetimes of coherent systems," Statistics & Probability Letters, Elsevier, vol. 83(12), pages 2664-2672.
    25. Gaofeng Da & Lvyu Xia & Taizhong Hu, 2014. "On Computing Signatures of k-out-of-n Systems Consisting of Modules," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 223-233, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi, He & Cui, Lirong & Balakrishnan, Narayanaswamy, 2021. "Computation of survival signatures for multi-state consecutive-k systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    2. Tavangar, Mahdi & Hashemi, Marzieh, 2022. "Reliability and maintenance analysis of coherent systems subject to aging and environmental shocks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    3. Eryilmaz, Serkan, 2020. "Age-based preventive maintenance for coherent systems with applications to consecutive-k-out-of-n and related systems," Reliability Engineering and System Safety, Elsevier, vol. 204(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi, He & Cui, Lirong & Balakrishnan, Narayanaswamy, 2021. "Computation of survival signatures for multi-state consecutive-k systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    2. Da, Gaofeng & Chan, Ping Shing & Xu, Maochao, 2018. "On the signature of complex system: A decomposed approach," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1115-1123.
    3. Sadiya & Mangey Ram & Akshay Kumar, 2022. "A New Approach to Compute System Reliability with Three-Serially Linked Modules," Mathematics, MDPI, vol. 11(1), pages 1-18, December.
    4. He Yi & Lirong Cui, 2018. "A new computation method for signature: Markov process method," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(5), pages 410-426, August.
    5. Zhu, Xiaojun & Balakrishnan, N., 2023. "Non-parametric inference based on reliability life-test of non-identical coherent systems with application to warranty time," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    6. Roy Cerqueti, 2022. "A new concept of reliability system and applications in finance," Annals of Operations Research, Springer, vol. 312(1), pages 45-64, May.
    7. Mahdi Tavangar, 2014. "Some comparisons of residual life of coherent systems with exchangeable components," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(7), pages 549-556, October.
    8. Gaofeng Da & Lvyu Xia & Taizhong Hu, 2014. "On Computing Signatures of k-out-of-n Systems Consisting of Modules," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 223-233, March.
    9. Zarezadeh, S. & Mohammadi, L. & Balakrishnan, N., 2018. "On the joint signature of several coherent systems with some shared components," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1092-1100.
    10. Zhengcheng Zhang & N. Balakrishnan, 2016. "Representations of the inactivity time for coherent systems with heterogeneous components and some ordered properties," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(1), pages 113-126, January.
    11. Serkan Eryilmaz & Markos V. Koutras & Ioannis S. Triantafyllou, 2011. "Signature based analysis of m‐Consecutive‐k‐out‐of‐n: F systems with exchangeable components," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(4), pages 344-354, June.
    12. Ioannis S. Triantafyllou, 2022. "Signature-Based Analysis of the Weighted- r -within-Consecutive- k -out-of- n : F Systems," Mathematics, MDPI, vol. 10(15), pages 1-13, July.
    13. M. Kelkin Nama & M. Asadi, 2014. "Stochastic Properties of Components in a Used Coherent System," Methodology and Computing in Applied Probability, Springer, vol. 16(3), pages 675-691, September.
    14. He Yi & Narayanaswamy Balakrishnan & Lirong Cui, 2021. "Comparisons of Multi-State Systems with Binary Components of Different Sizes," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1309-1321, December.
    15. Jorge Navarro & Marco Burkschat, 2011. "Coherent systems based on sequential order statistics," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(2), pages 123-135, March.
    16. He Yi & Narayanaswamy Balakrishnan & Lirong Cui, 2022. "On Dependent Multi-State Semi-Coherent Systems Based on Multi-State Joint Signature," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1717-1734, September.
    17. Marichal, Jean-Luc & Mathonet, Pierre & Spizzichino, Fabio, 2015. "On modular decompositions of system signatures," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 19-32.
    18. Eryilmaz, Serkan, 2011. "The behavior of warm standby components with respect to a coherent system," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1319-1325, August.
    19. Jingwen Lu & He Yi & Xiang Li & Narayanaswamy Balakrishnan, 2023. "Joint Reliability of Two Consecutive-(1, l) or (2, k)-out-of-(2, n): F Type Systems and Its Application in Smart Street Light Deployment," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-26, March.
    20. Sareh Goli, 2019. "On the conditional residual lifetime of coherent systems under double regularly checking," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(4), pages 352-363, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:189:y:2019:i:c:p:435-444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.