IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v169y2018icp40-50.html
   My bibliography  Save this article

Hydrostatic-season-time model updating using Bayesian model class selection

Author

Listed:
  • Gamse, Sonja
  • Zhou, Wan-Huan
  • Tan, Fang
  • Yuen, Ka-Veng
  • Oberguggenberger, Michael

Abstract

The aim of this paper is to present a novel attempt for parametric estimation in the hydrostatic-season-time (HST) model. The empirical HST-model has been widely used for the analysis of different measurement data types on dams. The significance of individual parameters or their sub-groups for modelling the influence of the water level, air and water temperature, and irreversible deformations due to the ageing of the dam, depends on the structure itself. The process of finding an accurate HST-model for a given data set, which remains robust to outliers, cannot only be demanding but also time consuming. The Bayesian model class selection approach imposes a penalisation against overly complex model candidates and admits a selection of the most plausible HST-model according to the maximum value of model evidence provided by the data or relative plausibility within a set of model class candidates. The potential of Bayes interference and its efficiency in an HST-model are presented on geodetic time series as a result of a permanent monitoring system on a rock-fill embankment dam. The method offers high potential for engineers in the decision making process, whilst the HST-model can be promptly adapted to new information given by new measurements and can enhance the safety and reliability of dams.

Suggested Citation

  • Gamse, Sonja & Zhou, Wan-Huan & Tan, Fang & Yuen, Ka-Veng & Oberguggenberger, Michael, 2018. "Hydrostatic-season-time model updating using Bayesian model class selection," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 40-50.
  • Handle: RePEc:eee:reensy:v:169:y:2018:i:c:p:40-50
    DOI: 10.1016/j.ress.2017.07.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017301692
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.07.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Delenne, C. & Cappelaere, B. & Guinot, V., 2012. "Uncertainty analysis of river flooding and dam failure risks using local sensitivity computations," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 171-183.
    2. M. Peng & L. Zhang, 2012. "Analysis of human risks due to dam-break floods—part 1: a new model based on Bayesian networks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 903-933, October.
    3. Barone, Giorgio & Frangopol, Dan M., 2014. "Reliability, risk and lifetime distributions as performance indicators for life-cycle maintenance of deteriorating structures," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 21-37.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alibeikloo, Mehrnaz & Khabbaz, Hadi & Fatahi, Behzad, 2022. "Random Field Reliability Analysis for Time-Dependent Behaviour of Soft Soils Considering Spatial Variability of Elastic Visco-Plastic Parameters," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    2. Tang, Cong & He, Shu-Yu & Zhou, Wan-Huan, 2022. "Settlement-based framework for long-term serviceability assessment of immersed tunnels," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    3. Alibeikloo, Mehrnaz & Khabbaz, Hadi & Fatahi, Behzad & Le, Thu Minh, 2021. "Reliability Assessment for Time-Dependent Behaviour of Soft Soils Considering Cross Correlation between Visco-Plastic Model Parameters," Reliability Engineering and System Safety, Elsevier, vol. 213(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, David Y. & Frangopol, Dan M., 2019. "Life-cycle management of deteriorating civil infrastructure considering resilience to lifetime hazards: A general approach based on renewal-reward processes," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 197-212.
    2. Pengxia Zhao & Tie Li & Biao Wang & Ming Li & Yu Wang & Xiahui Guo & Yue Yu, 2022. "The Scenario Construction and Evolution Method of Casualties in Liquid Ammonia Leakage Based on Bayesian Network," IJERPH, MDPI, vol. 19(24), pages 1-22, December.
    3. Vishwanath, B Sharanbaswa & Banerjee, Swagata, 2023. "Considering uncertainty in corrosion process to estimate life-cycle seismic vulnerability and risk of aging bridge piers," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    4. Doostparast, Mohammad & Kolahan, Farhad & Doostparast, Mahdi, 2014. "A reliability-based approach to optimize preventive maintenance scheduling for coherent systems," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 98-106.
    5. Wei Ge & Zongkun Li & Wei Li & Meimei Wu & Juanjuan Li & Yipeng Pan, 2020. "Risk evaluation of dam-break environmental impacts based on the set pair analysis and cloud model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1641-1653, November.
    6. Fluixá-Sanmartín, Javier & Escuder-Bueno, Ignacio & Morales-Torres, Adrián & Castillo-Rodríguez, Jesica Tamara, 2020. "Comprehensive decision-making approach for managing time dependent dam risks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    7. Ziemba, Paweł, 2022. "Uncertain Multi-Criteria analysis of offshore wind farms projects investments – Case study of the Polish Economic Zone of the Baltic Sea," Applied Energy, Elsevier, vol. 309(C).
    8. Rose, Rodrigo L. & Mugi, Sohan R. & Saleh, Joseph Homer, 2023. "Accident investigation and lessons not learned: AcciMap analysis of successive tailings dam collapses in Brazil," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    9. El-Awady, Ahmed & Ponnambalam, Kumaraswamy, 2021. "Integration of simulation and Markov Chains to support Bayesian Networks for probabilistic failure analysis of complex systems," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    10. Cheng, Minghui & Frangopol, Dan M., 2022. "Life-cycle optimization of structural systems based on cumulative prospect theory: Effects of the reference point and risk attitudes," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    11. Nofal, Omar M. & van de Lindt, John W. & Do, Trung Q., 2020. "Multi-variate and single-variable flood fragility and loss approaches for buildings," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    12. Ryan, Paraic C. & Stewart, Mark G. & Spencer, Nathan & Li, Yue, 2014. "Reliability assessment of power pole infrastructure incorporating deterioration and network maintenance," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 261-273.
    13. Bismut, Elizabeth & Straub, Daniel, 2021. "Optimal adaptive inspection and maintenance planning for deteriorating structural systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    14. Rui Liu & Yun Chen & Jianping Wu & Lei Gao & Damian Barrett & Tingbao Xu & Xiaojuan Li & Linyi Li & Chang Huang & Jia Yu, 2017. "Integrating Entropy‐Based Naïve Bayes and GIS for Spatial Evaluation of Flood Hazard," Risk Analysis, John Wiley & Sons, vol. 37(4), pages 756-773, April.
    15. Rajabzadeh, Vida & Hekmatzadeh, Ali Akbar & Tabatabaie Shourijeh, Piltan & Torabi Haghighi, Ali, 2023. "Introducing a probabilistic framework to measure dam overtopping risk for dams benefiting from dual spillways," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    16. Chi-Feng Chen & Chung-Ming Liu, 2014. "The definition of urban stormwater tolerance threshold and its conceptual estimation: an example from Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 173-190, September.
    17. Gong, Yu & Liu, Pan & Zhang, Jun & Liu, Dedi & Zhang, Xiaoqi & Zhang, Xiaojing, 2020. "Considering different streamflow forecast horizons in the quantitative flood risk analysis for a multi-reservoir system," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    18. Dongjing Huang & Zhongbo Yu & Yiping Li & Dawei Han & Lili Zhao & Qi Chu, 2017. "Calculation method and application of loss of life caused by dam break in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 39-57, January.
    19. Li, Bo & Zhang, Qiling & Yang, Shengmei & Tian, Yaling & Li, Zhi, 2023. "Identification of failure modes and paths of reservoir dams under explosion loads," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    20. Pei, Liang & Chen, Chen & He, Kun & Lu, Xiang, 2022. "System reliability of a gravity dam-foundation system using Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:169:y:2018:i:c:p:40-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.