IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v168y2017icp218-226.html
   My bibliography  Save this article

Prognostic control-enhanced maintenance optimization for multi-component systems

Author

Listed:
  • Niu, Gang
  • Jiang, Junjie

Abstract

In the last decades, the fast evolution of the industrial scenario has boosted the economic relevance of maintenance in all sectors of industry, and interests in maintenance can be expected to continue increasing in the next future. Maintenance has gained in importance as a support function for ensuring equipment availability, quality products, on-time deliveries, and plant safety. This paper presents a novel maintenance optimization strategy for multi-component systems that uses local prognostic control to improve health statue of operating systems at component-level and solves a global optimal problem to find proper maintenance interval at system-level, the combination of which can increase maintenance economy effectively. The proposed strategy can be demonstrated by a case study of braking system of rail vehicles. Compared with traditional dynamic maintenance methodologies, the results show that the maintenance cost can be reduced significantly when both health-oriented prognostic control and global optimization are utilized together.

Suggested Citation

  • Niu, Gang & Jiang, Junjie, 2017. "Prognostic control-enhanced maintenance optimization for multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 218-226.
  • Handle: RePEc:eee:reensy:v:168:y:2017:i:c:p:218-226
    DOI: 10.1016/j.ress.2017.04.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016308687
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.04.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Xiaojun & Lu, Zhiqiang & Xi, Lifeng, 2012. "Preventive maintenance optimization for a multi-component system under changing job shop schedule," Reliability Engineering and System Safety, Elsevier, vol. 101(C), pages 14-20.
    2. Richard Barlow & Larry Hunter, 1960. "Optimum Preventive Maintenance Policies," Operations Research, INFORMS, vol. 8(1), pages 90-100, February.
    3. Rommert Dekker & Ralph Wildeman & Frank Duyn Schouten, 1997. "A review of multi-component maintenance models with economic dependence," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 45(3), pages 411-435, October.
    4. Niu, Gang & Yang, Bo-Suk & Pecht, Michael, 2010. "Development of an optimized condition-based maintenance system by data fusion and reliability-centered maintenance," Reliability Engineering and System Safety, Elsevier, vol. 95(7), pages 786-796.
    5. Zio, Enrico & Compare, Michele, 2013. "Evaluating maintenance policies by quantitative modeling and analysis," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 53-65.
    6. Nguyen, Kim-Anh & Do, Phuc & Grall, Antoine, 2015. "Multi-level predictive maintenance for multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 83-94.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Yang & Miao, Xuewen & Si, Yong & Pan, Ershun & Zio, Enrico, 2022. "Prognostics and health management: A review from the perspectives of design, development and decision," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    2. Mandelli, Diego & Wang, Congjian & Agarwal, Vivek & Lin, Linyu & Manjunatha, Koushik A., 2024. "Reliability modeling in a predictive maintenance context: A margin-based approach," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Wu, Shaomin & Do, Phuc, 2017. "Editorial," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 1-3.
    4. Yousra El kihel & Ali El kihel & El Mahdi Bouyahrouzi, 2022. "Contribution of Maintenance 4.0 in Sustainable Development with an Industrial Case Study," Sustainability, MDPI, vol. 14(17), pages 1-26, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    2. Zhu, Mixin & Zhou, Xiaojun, 2023. "Hierarchical-clustering-based joint optimization of spare part provision and maintenance scheduling for serial-parallel multi-station manufacturing systems," International Journal of Production Economics, Elsevier, vol. 264(C).
    3. Zhang, Xiaohong & Zeng, Jianchao, 2015. "A general modeling method for opportunistic maintenance modeling of multi-unit systems," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 176-190.
    4. Seyed Habib A. Rahmati & Abbas Ahmadi & Kannan Govindan, 2018. "A novel integrated condition-based maintenance and stochastic flexible job shop scheduling problem: simulation-based optimization approach," Annals of Operations Research, Springer, vol. 269(1), pages 583-621, October.
    5. Verbert, K. & De Schutter, B. & Babuška, R., 2017. "Timely condition-based maintenance planning for multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 310-321.
    6. Lu, Biao & Zhou, Xiaojun, 2017. "Opportunistic preventive maintenance scheduling for serial-parallel multistage manufacturing systems with multiple streams of deterioration," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 116-127.
    7. Briš, Radim & Byczanski, Petr & Goňo, Radomír & Rusek, Stanislav, 2017. "Discrete maintenance optimization of complex multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 80-89.
    8. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.
    9. Nguyen, Kim-Anh & Do, Phuc & Grall, Antoine, 2017. "Joint predictive maintenance and inventory strategy for multi-component systems using Birnbaum’s structural importance," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 249-261.
    10. He, Rui & Tian, Zhigang & Wang, Yifei & Zuo, Mingjian & Guo, Ziwei, 2023. "Condition-based maintenance optimization for multi-component systems considering prognostic information and degraded working efficiency," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    11. Hashemi, M. & Asadi, M. & Tavangar, M., 2022. "Optimal maintenance strategies for coherent systems: A warranty dependent approach," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    12. Oakley, Jordan L. & Wilson, Kevin J. & Philipson, Pete, 2022. "A condition-based maintenance policy for continuously monitored multi-component systems with economic and stochastic dependence," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    13. Lin, Boliang & Wu, Jianping & Lin, Ruixi & Wang, Jiaxi & Wang, Hui & Zhang, Xuhui, 2019. "Optimization of high-level preventive maintenance scheduling for high-speed trains," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 261-275.
    14. Vu, Hai Canh & Do, Phuc & Fouladirad, Mitra & Grall, Antoine, 2020. "Dynamic opportunistic maintenance planning for multi-component redundant systems with various types of opportunities," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    15. Azadeh, A. & Asadzadeh, S.M. & Salehi, N. & Firoozi, M., 2015. "Condition-based maintenance effectiveness for series–parallel power generation system—A combined Markovian simulation model," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 357-368.
    16. Jaturonnatee, J. & Murthy, D.N.P. & Boondiskulchok, R., 2006. "Optimal preventive maintenance of leased equipment with corrective minimal repairs," European Journal of Operational Research, Elsevier, vol. 174(1), pages 201-215, October.
    17. Jiawen Hu & Zuhua Jiang & Haitao Liao, 2017. "Preventive maintenance of a batch production system under time-varying operational condition," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5681-5705, October.
    18. Ke, Hua & Yao, Kai, 2016. "Block replacement policy with uncertain lifetimes," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 119-124.
    19. Laggoune, Radouane & Chateauneuf, Alaa & Aissani, Djamil, 2010. "Impact of few failure data on the opportunistic replacement policy for multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 95(2), pages 108-119.
    20. Do Van, Phuc & Barros, Anne & Bérenguer, Christophe & Bouvard, Keomany & Brissaud, Florent, 2013. "Dynamic grouping maintenance with time limited opportunities," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 51-59.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:168:y:2017:i:c:p:218-226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.