A perturbed gamma process with statistically dependent measurement errors
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2016.03.024
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Rensheng Zhou & Nagi Gebraeel & Nicoleta Serban, 2012. "Degradation modeling and monitoring of truncated degradation signals," IISE Transactions, Taylor & Francis Journals, vol. 44(9), pages 793-803.
- Dongliang Lu & Mahesh D Pandey & Wei-Chau Xie, 2013. "An efficient method for the estimation of parameters of stochastic gamma process from noisy degradation measurements," Journal of Risk and Reliability, , vol. 227(4), pages 425-433, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xudan Chen & Guoxun Ji & Xinli Sun & Zhen Li, 2019. "Inverse Gaussian–based model with measurement errors for degradation analysis," Journal of Risk and Reliability, , vol. 233(6), pages 1086-1098, December.
- Liu, Xingheng & Matias, José & Jäschke, Johannes & Vatn, Jørn, 2022. "Gibbs sampler for noisy Transformed Gamma process: Inference and remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
- Hao, Songhua & Yang, Jun & Berenguer, Christophe, 2019. "Degradation analysis based on an extended inverse Gaussian process model with skew-normal random effects and measurement errors," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 261-270.
- Duan, Fengjun & Wang, Guanjun, 2022. "Bayesian analysis for the transformed exponential dispersion process with random effects," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
- Dong, Qinglai & Cui, Lirong, 2019. "A study on stochastic degradation process models under different types of failure Thresholds," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 202-212.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xiaolei Fang & Nagi Z. Gebraeel & Kamran Paynabar, 2017. "Scalable prognostic models for large-scale condition monitoring applications," IISE Transactions, Taylor & Francis Journals, vol. 49(7), pages 698-710, July.
- Son, Junbo & Zhou, Shiyu & Sankavaram, Chaitanya & Du, Xinyu & Zhang, Yilu, 2016. "Remaining useful life prediction based on noisy condition monitoring signals using constrained Kalman filter," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 38-50.
- Wu, Fan & Niknam, Seyed A. & Kobza, John E., 2015. "A cost effective degradation-based maintenance strategy under imperfect repair," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 234-243.
- Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
- Qin, H. & Zhou, W. & Zhang, S., 2015. "Bayesian inferences of generation and growth of corrosion defects on energy pipelines based on imperfect inspection data," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 334-342.
- Hao, Songhua & Yang, Jun & Berenguer, Christophe, 2018. "Nonlinear step-stress accelerated degradation modelling considering three sources of variability," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 207-215.
- Hao, Songhua & Yang, Jun & Berenguer, Christophe, 2019. "Degradation analysis based on an extended inverse Gaussian process model with skew-normal random effects and measurement errors," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 261-270.
- Nicola Esposito & Agostino Mele & Bruno Castanier & Massimiliano Giorgio, 2023. "A new gamma degradation process with random effect and state-dependent measurement error," Journal of Risk and Reliability, , vol. 237(5), pages 868-885, October.
- Li, Naipeng & Wang, Mingyang & Lei, Yaguo & Si, Xiaosheng & Yang, Bin & Li, Xiang, 2024. "A nonparametric degradation modeling method for remaining useful life prediction with fragment data," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
- Le Son, Khanh & Fouladirad, Mitra & Barros, Anne, 2016. "Remaining useful lifetime estimation and noisy gamma deterioration process," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 76-87.
More about this item
Keywords
Stochastic processes; Gamma process; Dependent measurement errors; Destructive tests; Monte Carlo integration method;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:152:y:2016:i:c:p:296-306. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.