IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v130y2014icp115-124.html
   My bibliography  Save this article

Asymptotic optimality of RESTART estimators in highly dependable systems

Author

Listed:
  • Villén-Altamirano, J.

Abstract

We consider a wide class of models that includes the highly reliable Markovian systems (HRMS) often used to represent the evolution of multi-component systems in reliability settings. Repair times and component lifetimes are random variables that follow a general distribution, and the repair service adopts a priority repair rule based on system failure risk. Since crude simulation has proved to be inefficient for highly-dependable systems, the RESTART method is used for the estimation of steady-state unavailability and other reliability measures. In this method, a number of simulation retrials are performed when the process enters regions of the state space where the chance of occurrence of a rare event (e.g., a system failure) is higher. The main difficulty involved in applying this method is finding a suitable function, called the importance function, to define the regions. In this paper we introduce an importance function which, for unbalanced systems, represents a great improvement over the importance function used in previous papers. We also demonstrate the asymptotic optimality of RESTART estimators in these models. Several examples are presented to show the effectiveness of the new approach, and probabilities up to the order of 10−42 are accurately estimated with little computational effort.

Suggested Citation

  • Villén-Altamirano, J., 2014. "Asymptotic optimality of RESTART estimators in highly dependable systems," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 115-124.
  • Handle: RePEc:eee:reensy:v:130:y:2014:i:c:p:115-124
    DOI: 10.1016/j.ress.2014.05.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832014001227
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2014.05.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Perwez Shahabuddin, 1994. "Importance Sampling for the Simulation of Highly Reliable Markovian Systems," Management Science, INFORMS, vol. 40(3), pages 333-352, March.
    2. Cadini, F. & Avram, D. & Pedroni, N. & Zio, E., 2012. "Subset Simulation of a reliability model for radioactive waste repository performance assessment," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 75-83.
    3. Zio, E. & Pedroni, N., 2012. "Monte Carlo simulation-based sensitivity analysis of the model of a thermal–hydraulic passive system," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 90-106.
    4. Pierre L’Ecuyer & Bruno Tuffin, 2011. "Approximating zero-variance importance sampling in a reliability setting," Annals of Operations Research, Springer, vol. 189(1), pages 277-297, September.
    5. Morio, Jérôme, 2011. "Non-parametric adaptive importance sampling for the probability estimation of a launcher impact position," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 178-183.
    6. Kaynar, Bahar & Ridder, Ad, 2010. "The cross-entropy method with patching for rare-event simulation of large Markov chains," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1380-1397, December.
    7. Xiao, Gang & Li, Zhizhong & Li, Ting, 2007. "Dependability estimation for non-Markov consecutive-k-out-of-n: F repairable systems by fast simulation," Reliability Engineering and System Safety, Elsevier, vol. 92(3), pages 293-299.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Turati, Pietro & Pedroni, Nicola & Zio, Enrico, 2016. "Advanced RESTART method for the estimation of the probability of failure of highly reliable hybrid dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 117-126.
    2. Briš, Radim & Byczanski, Petr & Goňo, Radomír & Rusek, Stanislav, 2017. "Discrete maintenance optimization of complex multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 80-89.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helton, J.C. & Hansen, C.W. & Sallaberry, C.J., 2014. "Conceptual structure and computational organization of the 2008 performance assessment for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada," Reliability Engineering and System Safety, Elsevier, vol. 122(C), pages 223-248.
    2. Pierre L’Ecuyer & Bruno Tuffin, 2011. "Approximating zero-variance importance sampling in a reliability setting," Annals of Operations Research, Springer, vol. 189(1), pages 277-297, September.
    3. Mattrand, C. & Bourinet, J.-M., 2014. "The cross-entropy method for reliability assessment of cracked structures subjected to random Markovian loads," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 171-182.
    4. Yu, Weichao & Huang, Weihe & Wen, Kai & Zhang, Jie & Liu, Hongfei & Wang, Kun & Gong, Jing & Qu, Chunxu, 2021. "Subset simulation-based reliability analysis of the corroding natural gas pipeline," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    5. Chen, Jun-Yu & Feng, Yun-Wen & Teng, Da & Lu, Cheng & Fei, Cheng-Wei, 2022. "Support vector machine-based similarity selection method for structural transient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    6. Mathieu Balesdent & Jérôme Morio & Loïc Brevault, 2016. "Rare Event Probability Estimation in the Presence of Epistemic Uncertainty on Input Probability Distribution Parameters," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 197-216, March.
    7. Lirong Cui & Shijia Du & Aofu Zhang, 2014. "Reliability measures for two-part partition of states for aggregated Markov repairable systems," Annals of Operations Research, Springer, vol. 212(1), pages 93-114, January.
    8. Nikola Gradojevic & Marko Caric, 2017. "Predicting Systemic Risk with Entropic Indicators," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(1), pages 16-25, January.
    9. Yu Yu & Nan Ma & Shengfei Wang & Fenglei Niu, 2015. "Effect of air temperature on passive containment cooling system reliability in AP1000," Journal of Risk and Reliability, , vol. 229(4), pages 310-318, August.
    10. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 2000. "Variance Reduction Techniques for Estimating Value-at-Risk," Management Science, INFORMS, vol. 46(10), pages 1349-1364, October.
    11. Sandeep Juneja & Perwez Shahabuddin, 2001. "Fast Simulation of Markov Chains with Small Transition Probabilities," Management Science, INFORMS, vol. 47(4), pages 547-562, April.
    12. Ad Ridder & Bruno Tuffin, 2012. "Probabilistic Bounded Relative Error Property for Learning Rare Event Simulation Techniques," Tinbergen Institute Discussion Papers 12-103/III, Tinbergen Institute.
    13. Kleijnen, Jack P.C. & Ridder, A.A.N. & Rubinstein, R.Y., 2010. "Variance Reduction Techniques in Monte Carlo Methods," Other publications TiSEM 87680d1a-53c1-4107-ada4-7, Tilburg University, School of Economics and Management.
    14. Kaynar, Bahar & Ridder, Ad, 2010. "The cross-entropy method with patching for rare-event simulation of large Markov chains," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1380-1397, December.
    15. El Masri, Maxime & Morio, Jérôme & Simatos, Florian, 2021. "Improvement of the cross-entropy method in high dimension for failure probability estimation through a one-dimensional projection without gradient estimation," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    16. Eryılmaz, Serkan, 2009. "Reliability properties of consecutive k-out-of-n systems of arbitrarily dependent components," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 350-356.
    17. Huber, Mark & Jones, Bo, 2019. "Faster estimates of the mean of bounded random variables," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 93-101.
    18. Villén-Altamirano, José, 2010. "RESTART simulation of non-Markov consecutive-k-out-of-n: F repairable systems," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 247-254.
    19. Cadini, Francesco & Agliardi, Gian Luca & Zio, Enrico, 2017. "Estimation of rare event probabilities in power transmission networks subject to cascading failures," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 9-20.
    20. Balesdent, Mathieu & Morio, Jérôme & Marzat, Julien, 2015. "Recommendations for the tuning of rare event probability estimators," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 68-78.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:130:y:2014:i:c:p:115-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.