IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v133y2015icp68-78.html
   My bibliography  Save this article

Recommendations for the tuning of rare event probability estimators

Author

Listed:
  • Balesdent, Mathieu
  • Morio, Jérôme
  • Marzat, Julien

Abstract

Being able to accurately estimate rare event probabilities is a challenging issue in order to improve the reliability of complex systems. Several powerful methods such as importance sampling, importance splitting or extreme value theory have been proposed in order to reduce the computational cost and to improve the accuracy of extreme probability estimation. However, the performance of these methods is highly correlated with the choice of tuning parameters, which are very difficult to determine. In order to highlight recommended tunings for such methods, an empirical campaign of automatic tuning on a set of representative test cases is conducted for splitting methods. It allows to provide a reduced set of tuning parameters that may lead to the reliable estimation of rare event probability for various problems. The relevance of the obtained result is assessed on a series of real-world aerospace problems.

Suggested Citation

  • Balesdent, Mathieu & Morio, Jérôme & Marzat, Julien, 2015. "Recommendations for the tuning of rare event probability estimators," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 68-78.
  • Handle: RePEc:eee:reensy:v:133:y:2015:i:c:p:68-78
    DOI: 10.1016/j.ress.2014.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832014002117
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2014.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gen, Mitsuo & Yun, YoungSu, 2006. "Soft computing approach for reliability optimization: State-of-the-art survey," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 1008-1026.
    2. Rubinstein, Reuven Y., 1997. "Optimization of computer simulation models with rare events," European Journal of Operational Research, Elsevier, vol. 99(1), pages 89-112, May.
    3. Manfred Gilli & Evis këllezi, 2006. "An Application of Extreme Value Theory for Measuring Financial Risk," Computational Economics, Springer;Society for Computational Economics, vol. 27(2), pages 207-228, May.
    4. Morio, Jérôme, 2011. "Non-parametric adaptive importance sampling for the probability estimation of a launcher impact position," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 178-183.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Perrin, G., 2021. "Point process-based approaches for the reliability analysis of systems modeled by costly simulators," Reliability Engineering and System Safety, Elsevier, vol. 214(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mattrand, C. & Bourinet, J.-M., 2014. "The cross-entropy method for reliability assessment of cracked structures subjected to random Markovian loads," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 171-182.
    2. Mathieu Balesdent & Jérôme Morio & Loïc Brevault, 2016. "Rare Event Probability Estimation in the Presence of Epistemic Uncertainty on Input Probability Distribution Parameters," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 197-216, March.
    3. J Morio & R Pastel, 2012. "Plug-in estimation of d-dimensional density minimum volume set of a rare event in a complex system," Journal of Risk and Reliability, , vol. 226(3), pages 337-345, June.
    4. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    5. Carlin C. F. Chu & Simon S. W. Li, 2024. "A multiobjective optimization approach for threshold determination in extreme value analysis for financial time series," Computational Management Science, Springer, vol. 21(1), pages 1-14, June.
    6. Li, Chun-yang & Chen, Xun & Yi, Xiao-shan & Tao, Jun-yong, 2010. "Heterogeneous redundancy optimization for multi-state series–parallel systems subject to common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 202-207.
    7. Amira Dridi & Mohamed El Ghourabi & Mohamed Limam, 2012. "On monitoring financial stress index with extreme value theory," Quantitative Finance, Taylor & Francis Journals, vol. 12(3), pages 329-339, March.
    8. Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
    9. Chen, Jun-Yu & Feng, Yun-Wen & Teng, Da & Lu, Cheng & Fei, Cheng-Wei, 2022. "Support vector machine-based similarity selection method for structural transient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    10. Debasis Bhattacharya & Soma Roychowdhury, 2017. "A redundancy strategy for minimizing cost in systems with non-disjoint subsystems under reliability constraint," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 645-655, November.
    11. M. Naresh Kumar & V. Sree Hari Rao, 2015. "A New Methodology for Estimating Internal Credit Risk and Bankruptcy Prediction under Basel II Regime," Computational Economics, Springer;Society for Computational Economics, vol. 46(1), pages 83-102, June.
    12. Kin-Ping Hui, 2011. "Cooperative Cross-Entropy method for generating entangled networks," Annals of Operations Research, Springer, vol. 189(1), pages 205-214, September.
    13. K.-P. Hui & N. Bean & M. Kraetzl & Dirk Kroese, 2005. "The Cross-Entropy Method for Network Reliability Estimation," Annals of Operations Research, Springer, vol. 134(1), pages 101-118, February.
    14. Mohammad Hassan Salmani & Kourosh Eshghi, 2017. "A Metaheuristic Algorithm Based on Chemotherapy Science: CSA," Journal of Optimization, Hindawi, vol. 2017, pages 1-13, February.
    15. Xia Yang & Jing Zhang & Wei-Xin Ren, 2018. "Threshold selection for extreme value estimation of vehicle load effect on bridges," International Journal of Distributed Sensor Networks, , vol. 14(2), pages 15501477187, February.
    16. Patelli, Edoardo & Feng, Geng & Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2017. "Simulation methods for system reliability using the survival signature," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 327-337.
    17. Prashanthi Boddu & Liudong Xing, 2013. "Reliability evaluation and optimization of series–parallel systems with k-out-of-n: G subsystems and mixed redundancy types," Journal of Risk and Reliability, , vol. 227(2), pages 187-198, April.
    18. Xin Chen & Zhangming Shan & Decai Tang & Biao Zhou & Valentina Boamah, 2023. "Interest rate risk of Chinese commercial banks based on the GARCH-EVT model," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-11, December.
    19. Chao Wang & Richard Gerlach, 2019. "Semi-parametric Realized Nonlinear Conditional Autoregressive Expectile and Expected Shortfall," Papers 1906.09961, arXiv.org.
    20. Saranya, K. & Prasanna, P. Krishna, 2018. "Estimating stochastic volatility with jumps and asymmetry in Asian markets," Finance Research Letters, Elsevier, vol. 25(C), pages 145-153.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:133:y:2015:i:c:p:68-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.