IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v68y2012icp54-66.html
   My bibliography  Save this article

Material flow indicators and carbon footprint for MSW management systems: Analysis and application at regional level, Cantabria, Spain

Author

Listed:
  • Cifrian, Eva
  • Galan, Berta
  • Andres, Ana
  • Viguri, Javier R.

Abstract

This paper analyses the use of indicators for tracking the progress over time (2005–2010) of the municipal solid waste (MSW) management targets in the region of Cantabria (Northern Spain). The combined use of a set of material flow indicators together with estimations of carbon footprint (CF) is suggested. The MSW generation, the treatment of MSW (recycling, composting, incineration and landfilling), the recycling rates of glass, paper and cardboard and packaging wastes, and the landfill of bio-waste have been used as individual indicators. The main characteristics of different CF models applied to MSW management system are highlighted. Four CF models that allow indirect emissions accounting and that use a wide range of aggregated emission factors have been applied to the Cantabria MSW management system. According to the studied set of indicators based on material flows, some of the regional objectives for recycling rates have been achieved by 2010. Besides, the CF values have improved significantly in savings (−179,527tCO2e in 2005 to −310,566tCO2e in 2010) or in neat loads (74,443tCO2e in 2005 to 67,697tCO2e in 2010), depending on the CF model used. The decrease is due mainly to the implementation of the incineration plant at 2007 and the starts up of the municipal sewage sludge drying facilities. Further improvements on the MSW management indicators and additional reductions in GHGs emissions can be achieved through application of the specific actions on the Cantabria Regional Waste Plans by 2014. The analysed material flow indicators together with the CF data obtained in the present work would be useful in the regional planning decisions on the MSW management issue.

Suggested Citation

  • Cifrian, Eva & Galan, Berta & Andres, Ana & Viguri, Javier R., 2012. "Material flow indicators and carbon footprint for MSW management systems: Analysis and application at regional level, Cantabria, Spain," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 54-66.
  • Handle: RePEc:eee:recore:v:68:y:2012:i:c:p:54-66
    DOI: 10.1016/j.resconrec.2012.08.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344912001450
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2012.08.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohareb, Adrian K. & Warith, Mostafa A. & Diaz, Rodrigo, 2008. "Modelling greenhouse gas emissions for municipal solid waste management strategies in Ottawa, Ontario, Canada," Resources, Conservation & Recycling, Elsevier, vol. 52(11), pages 1241-1251.
    2. Yabar, Helmut & Hara, Keishiro & Uwasu, Michinori, 2012. "Comparative assessment of the co-evolution of environmental indicator systems in Japan and China," Resources, Conservation & Recycling, Elsevier, vol. 61(C), pages 43-51.
    3. Giljum, Stefan & Burger, Eva & Hinterberger, Friedrich & Lutter, Stephan & Bruckner, Martin, 2011. "A comprehensive set of resource use indicators from the micro to the macro level," Resources, Conservation & Recycling, Elsevier, vol. 55(3), pages 300-308.
    4. Mühle, S. & Balsam, I. & Cheeseman, C.R., 2010. "Comparison of carbon emissions associated with municipal solid waste management in Germany and the UK," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 793-801.
    5. Browne, David & O’Regan, Bernadette & Moles, Richard, 2009. "Use of carbon footprinting to explore alternative household waste policy scenarios in an Irish city-region," Resources, Conservation & Recycling, Elsevier, vol. 54(2), pages 113-122.
    6. Sjöström, Magnus & Östblom, Göran, 2010. "Decoupling waste generation from economic growth -- A CGE analysis of the Swedish case," Ecological Economics, Elsevier, vol. 69(7), pages 1545-1552, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valero, Alicia & Valero, Antonio & Calvo, Guiomar, 2015. "Using thermodynamics to improve the resource efficiency indicator GDP/DMC," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 110-117.
    2. Huang, Chu-Long & Vause, Jonathan & Ma, Hwong-Wen & Yu, Chang-Ping, 2012. "Using material/substance flow analysis to support sustainable development assessment: A literature review and outlook," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 104-116.
    3. Franchetti, Matthew & Kilaru, Prabhu, 2012. "Modeling the impact of municipal solid waste recycling on greenhouse gas emissions in Ohio, USA," Resources, Conservation & Recycling, Elsevier, vol. 58(C), pages 107-113.
    4. Carmen van der Merwe & Martin de Wit, 2021. "An In-Depth Investigation into the Relationship Between Municipal Solid Waste Generation and Economic Growth in the City of Cape Town," Working Papers 07/2021, Stellenbosch University, Department of Economics, revised 2021.
    5. Leonidas Milios, 2021. "Towards a Circular Economy Taxation Framework: Expectations and Challenges of Implementation," Circular Economy and Sustainability,, Springer.
    6. George Halkos & George Papageorgiou, 2016. "Spatial environmental efficiency indicators in regional waste generation: a nonparametric approach," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(1), pages 62-78, January.
    7. Huysman, Sofie & Sala, Serenella & Mancini, Lucia & Ardente, Fulvio & Alvarenga, Rodrigo A.F. & De Meester, Steven & Mathieux, Fabrice & Dewulf, Jo, 2015. "Toward a systematized framework for resource efficiency indicators," Resources, Conservation & Recycling, Elsevier, vol. 95(C), pages 68-76.
    8. Xin, Yongrong & Ajaz, Tahseen & Shahzad, Mohsin & Luo, Jia, 2023. "How productive capacities influence trade-adjusted resources consumption in China: Testing resource-based EKC," Resources Policy, Elsevier, vol. 81(C).
    9. Asma Awan & Sidra Nawaz, 2022. "Towards Green Growth: Monitoring Progress and Investigating Its Determinants in South Asia," Journal of Economic Impact, Science Impact Publishers, vol. 4(3), pages 252-264.
    10. Miao, Chenglin & Fang, Debin & Sun, Liyan & Luo, Qiaoling, 2017. "Natural resources utilization efficiency under the influence of green technological innovation," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 153-161.
    11. Wei, Wendong & Cai, Wenqiu & Guo, Yi & Bai, Caiquan & Yang, Luzhen, 2020. "Decoupling relationship between energy consumption and economic growth in China's provinces from the perspective of resource security," Resources Policy, Elsevier, vol. 68(C).
    12. Yu, Xuewei & Moreno-Cruz, Juan & Crittenden, John C., 2015. "Regional energy rebound effect: The impact of economy-wide and sector level energy efficiency improvement in Georgia, USA," Energy Policy, Elsevier, vol. 87(C), pages 250-259.
    13. Maria Ljunggren Söderman & Ola Eriksson & Anna Björklund & Göran Östblom & Tomas Ekvall & Göran Finnveden & Yevgeniya Arushanyan & Jan-Olov Sundqvist, 2016. "Integrated Economic and Environmental Assessment of Waste Policy Instruments," Sustainability, MDPI, vol. 8(5), pages 1-21, April.
    14. Halkos, George & Petrou, Kleoniki Natalia, 2018. "Assessment of national waste generation in EU Member States’ efficiency," MPRA Paper 84590, University Library of Munich, Germany.
    15. Marconsin, Adauto Fernandes & Rosa, Derval dos Santos, 2013. "A comparison of two models for dealing with urban solid waste: Management by contract and management by public–private partnership," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 115-123.
    16. Marrero, Madelyn & Puerto, Manuel & Rivero-Camacho, Cristina & Freire-Guerrero, Antonio & Solís-Guzmán, Jaime, 2017. "Assessing the economic impact and ecological footprint of construction and demolition waste during the urbanization of rural land," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 160-174.
    17. Minoglou, Minas & Komilis, Dimitrios, 2013. "Optimizing the treatment and disposal of municipal solid wastes using mathematical programming—A case study in a Greek region," Resources, Conservation & Recycling, Elsevier, vol. 80(C), pages 46-57.
    18. Ming-Ming Zhao & Rongrong Li, 2018. "Decoupling and decomposition analysis of carbon emissions from economic output in Chinese Guangdong Province: A sector perspective," Energy & Environment, , vol. 29(4), pages 543-555, June.
    19. Tran, Thuc Han & Egermann, Markus, 2022. "Land-use implications of energy transition pathways towards decarbonisation – Comparing the footprints of Vietnam, New Zealand and Finland," Energy Policy, Elsevier, vol. 166(C).
    20. J. Brusselaers & K. Breemersch & T. Geerken & M. Christis & B. Lahcen & Y. Dams, 2022. "Macroeconomic and environmental consequences of circular economy measures in a small open economy," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 68(2), pages 283-306, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:68:y:2012:i:c:p:54-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.