IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v200y2018icp302-310.html
   My bibliography  Save this article

Optimizing make-to-stock policies through a robust lot-sizing model

Author

Listed:
  • Agra, Agostinho
  • Poss, Michael
  • Santos, Micael

Abstract

In this paper we consider a practical lot-sizing problem faced by an industrial company. The company plans the production for a set of products following a Make-To-Order policy. When the productive capacity is not fully used, the remaining capacity is devoted to the production of those products whose orders are typically quite below the established minimum production level. For these products the company follows a Make-To-Stock (MTS) policy since part of the production is to fulfill future estimated orders. This yields a particular lot-sizing problem aiming to decide which products should be produced and the corresponding batch sizes. These lot-sizing problems typically face uncertain demands, which we address here through the lens of robust optimization. First we provide a mixed integer formulation assuming the future demands are deterministic and we tighten the model with valid inequalities. Then, in order to account for uncertainty of the demands, we propose a robust approach where demands are assumed to belong to given intervals and the number of deviations to the nominal estimated value is limited. As the number of products can be large and some instances may not be solved to optimality, we propose two heuristics. Computational tests are conducted on a set of instances generated from real data provided by our industrial partner. The heuristics proposed are fast and provide good quality solutions for the tested instances. Moreover, since they are based on the mathematical model and use simple strategies to reduce the instances size, these heuristics could be extended to solve other multi-item lot-sizing problems where demands are uncertain.

Suggested Citation

  • Agra, Agostinho & Poss, Michael & Santos, Micael, 2018. "Optimizing make-to-stock policies through a robust lot-sizing model," International Journal of Production Economics, Elsevier, vol. 200(C), pages 302-310.
  • Handle: RePEc:eee:proeco:v:200:y:2018:i:c:p:302-310
    DOI: 10.1016/j.ijpe.2018.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527318301579
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2018.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olhager, Jan & Prajogo, Daniel I., 2012. "The impact of manufacturing and supply chain improvement initiatives: A survey comparing make-to-order and make-to-stock firms," Omega, Elsevier, vol. 40(2), pages 159-165, April.
    2. Tang, Ou & Nurmaya Musa, S., 2011. "Identifying risk issues and research advancements in supply chain risk management," International Journal of Production Economics, Elsevier, vol. 133(1), pages 25-34, September.
    3. Dan A. Iancu & Mayank Sharma & Maxim Sviridenko, 2013. "Supermodularity and Affine Policies in Dynamic Robust Optimization," Operations Research, INFORMS, vol. 61(4), pages 941-956, August.
    4. Beemsterboer, Bart & Land, Martin & Teunter, Ruud & Bokhorst, Jos, 2017. "Reprint of “Integrating make-to-order and make-to-stock in job shop control”," International Journal of Production Economics, Elsevier, vol. 194(C), pages 3-12.
    5. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    6. Beemsterboer, Bart & Land, Martin & Teunter, Ruud, 2017. "Flexible lot sizing in hybrid make-to-order/make-to-stock production planning," European Journal of Operational Research, Elsevier, vol. 260(3), pages 1014-1023.
    7. Klaus Altendorfer & Stefan Minner, 2014. "A comparison of make-to-stock and make-to-order in multi-product manufacturing systems with variable due dates," IISE Transactions, Taylor & Francis Journals, vol. 46(3), pages 197-212.
    8. Beemsterboer, Bart & Land, Martin & Teunter, Ruud, 2016. "Hybrid MTO-MTS production planning: An explorative study," European Journal of Operational Research, Elsevier, vol. 248(2), pages 453-461.
    9. Philip Kaminsky & Onur Kaya, 2009. "Combined make-to-order/make-to-stock supply chains," IISE Transactions, Taylor & Francis Journals, vol. 41(2), pages 103-119.
    10. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    11. Gorissen, Bram L. & den Hertog, Dick, 2013. "Robust counterparts of inequalities containing sums of maxima of linear functions," European Journal of Operational Research, Elsevier, vol. 227(1), pages 30-43.
    12. Dimitris Bertsimas & Aurélie Thiele, 2006. "A Robust Optimization Approach to Inventory Theory," Operations Research, INFORMS, vol. 54(1), pages 150-168, February.
    13. Soman, Chetan Anil & van Donk, Dirk Pieter & Gaalman, Gerard, 2004. "Combined make-to-order and make-to-stock in a food production system," International Journal of Production Economics, Elsevier, vol. 90(2), pages 223-235, July.
    14. Zhang, Zhe George & Kim, Ilhyung & Springer, Mark & Cai, Gangshu (George) & Yu, Yugang, 2013. "Dynamic pooling of make-to-stock and make-to-order operations," International Journal of Production Economics, Elsevier, vol. 144(1), pages 44-56.
    15. Beemsterboer, Bart & Land, Martin & Teunter, Ruud & Bokhorst, Jos, 2017. "Integrating make-to-order and make-to-stock in job shop control," International Journal of Production Economics, Elsevier, vol. 185(C), pages 1-10.
    16. Miles Lubin & Iain Dunning, 2015. "Computing in Operations Research Using Julia," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 238-248, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Witthayapraphakorn, Aphisak & Charnsethikul, Peerayuth, 2019. "Benders decomposition with special purpose method for the sub problem in lot sizing problem under uncertain demand," Operations Research Perspectives, Elsevier, vol. 6(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pereira, Daniel Filipe & Oliveira, José Fernando & Carravilla, Maria Antónia, 2022. "Merging make-to-stock/make-to-order decisions into sales and operations planning: A multi-objective approach," Omega, Elsevier, vol. 107(C).
    2. Hamed Mamani & Shima Nassiri & Michael R. Wagner, 2017. "Closed-Form Solutions for Robust Inventory Management," Management Science, INFORMS, vol. 63(5), pages 1625-1643, May.
    3. Amir Ardestani-Jaafari & Erick Delage, 2016. "Robust Optimization of Sums of Piecewise Linear Functions with Application to Inventory Problems," Operations Research, INFORMS, vol. 64(2), pages 474-494, April.
    4. Sato, Yutaro & Maeda, Hiroyuki & Toshima, Ryusei & Nagasawa, Keisuke & Morikawa, Katsumi & Takahashi, Katsuhiko, 2023. "Switching decisions in a hybrid MTS/MTO production system comprising multiple machines considering setup," International Journal of Production Economics, Elsevier, vol. 263(C).
    5. Viktoryia Buhayenko & Dick den Hertog, 2017. "Adjustable Robust Optimisation approach to optimise discounts for multi-period supply chain coordination under demand uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 55(22), pages 6801-6823, November.
    6. Xie, Chen & Wang, Liangquan & Yang, Chaolin, 2021. "Robust inventory management with multiple supply sources," European Journal of Operational Research, Elsevier, vol. 295(2), pages 463-474.
    7. Jiankun Sun & Jan A. Van Mieghem, 2019. "Robust Dual Sourcing Inventory Management: Optimality of Capped Dual Index Policies and Smoothing," Manufacturing & Service Operations Management, INFORMS, vol. 21(4), pages 912-931, October.
    8. Marcio Costa Santos & Michael Poss & Dritan Nace, 2018. "A perfect information lower bound for robust lot-sizing problems," Annals of Operations Research, Springer, vol. 271(2), pages 887-913, December.
    9. Filipe Rodrigues & Agostinho Agra & Cristina Requejo & Erick Delage, 2021. "Lagrangian Duality for Robust Problems with Decomposable Functions: The Case of a Robust Inventory Problem," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 685-705, May.
    10. Roberto Gomes de Mattos & Fabricio Oliveira & Adriana Leiras & Abdon Baptista de Paula Filho & Paulo Gonçalves, 2019. "Robust optimization of the insecticide-treated bed nets procurement and distribution planning under uncertainty for malaria prevention and control," Annals of Operations Research, Springer, vol. 283(1), pages 1045-1078, December.
    11. Guanglei Wang & Hassan Hijazi, 2018. "Mathematical programming methods for microgrid design and operations: a survey on deterministic and stochastic approaches," Computational Optimization and Applications, Springer, vol. 71(2), pages 553-608, November.
    12. Jiang, Sheng-Long & Peng, Gongzhuang & Bogle, I. David L. & Zheng, Zhong, 2022. "Two-stage robust optimization approach for flexible oxygen distribution under uncertainty in integrated iron and steel plants," Applied Energy, Elsevier, vol. 306(PB).
    13. Oğuz Solyalı & Jean-François Cordeau & Gilbert Laporte, 2016. "The Impact of Modeling on Robust Inventory Management Under Demand Uncertainty," Management Science, INFORMS, vol. 62(4), pages 1188-1201, April.
    14. Zhi Chen & Melvyn Sim & Peng Xiong, 2020. "Robust Stochastic Optimization Made Easy with RSOME," Management Science, INFORMS, vol. 66(8), pages 3329-3339, August.
    15. Beemsterboer, Bart & Land, Martin & Teunter, Ruud, 2016. "Hybrid MTO-MTS production planning: An explorative study," European Journal of Operational Research, Elsevier, vol. 248(2), pages 453-461.
    16. Marcus Ang & Yun Fong Lim & Melvyn Sim, 2012. "Robust Storage Assignment in Unit-Load Warehouses," Management Science, INFORMS, vol. 58(11), pages 2114-2130, November.
    17. Roos, Ernst & den Hertog, Dick, 2019. "Reducing conservatism in robust optimization," Other publications TiSEM ad0238cd-de7a-4366-b487-b, Tilburg University, School of Economics and Management.
    18. Cleber D. Rocco & Reinaldo Morabito, 2016. "Robust optimisation approach applied to the analysis of production / logistics and crop planning in the tomato processing industry," International Journal of Production Research, Taylor & Francis Journals, vol. 54(19), pages 5842-5861, October.
    19. Dimitris Bertsimas & Velibor V. Mišić, 2017. "Robust Product Line Design," Operations Research, INFORMS, vol. 65(1), pages 19-37, February.
    20. Feng, Wei & Feng, Yiping & Zhang, Qi, 2021. "Multistage robust mixed-integer optimization under endogenous uncertainty," European Journal of Operational Research, Elsevier, vol. 294(2), pages 460-475.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:200:y:2018:i:c:p:302-310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.