IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Building knowledge to improve enterprise performance from inventory simulation models

Listed author(s):
  • Diaz, Rafael
  • Bailey, Mike
Registered author(s):

    This paper describes the process of building knowledge to improve enterprise performance. This allows managers both to identify unknown risks and to develop solutions that mitigate these risks. One of the most critical risks that the enterprise faces involves the unidentified presence of serial-correlation components on the demand patterns. Depending upon the levels of such correlation, inventory control policies can be appreciably inaccurate. We propose to use a knowledge management portfolio that allows managers to capture and build knowledge from their complex systems. We find that the error generated from ignoring identified risk factors exponentially grows as the autocorrelation increases. We construct an enhanced simulated annealing algorithm that provides superior solutions to this type of problem.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal International Journal of Production Economics.

    Volume (Year): 134 (2011)
    Issue (Month): 1 (November)
    Pages: 108-113

    in new window

    Handle: RePEc:eee:proeco:v:134:y:2011:i:1:p:108-113
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Minner, Stefan, 2003. "Multiple-supplier inventory models in supply chain management: A review," International Journal of Production Economics, Elsevier, vol. 81(1), pages 265-279, January.
    2. Warren H. Hausman & Nesim K. Erkip, 1994. "Multi-Echelon vs. Single-Echelon Inventory Control Policies for Low-Demand Items," Management Science, INFORMS, vol. 40(5), pages 597-602, May.
    3. Hau L. Lee & Kut C. So & Christopher S. Tang, 2000. "The Value of Information Sharing in a Two-Level Supply Chain," Management Science, INFORMS, vol. 46(5), pages 626-643, May.
    4. Kahn, James A, 1987. "Inventories and the Volatility of Production," American Economic Review, American Economic Association, vol. 77(4), pages 667-679, September.
    5. Hau L. Lee & V. Padmanabhan & Seungjin Whang, 1997. "Information Distortion in a Supply Chain: The Bullwhip Effect," Management Science, INFORMS, vol. 43(4), pages 546-558, April.
    6. Perrott, Bruce E., 2007. "A strategic risk approach to knowledge management," Business Horizons, Elsevier, vol. 50(6), pages 523-533.
    7. Tang, Ou, 2004. "Simulated annealing in lot sizing problems," International Journal of Production Economics, Elsevier, vol. 88(2), pages 173-181, March.
    8. Urban, Timothy L., 2005. "A periodic-review model with serially-correlated, inventory-level-dependent demand," International Journal of Production Economics, Elsevier, vol. 95(3), pages 287-295, March.
    9. Lin, Shih-Wei & Ying, Kuo-Ching & Lu, Chung-Cheng & Gupta, Jatinder N.D., 2011. "Applying multi-start simulated annealing to schedule a flowline manufacturing cell with sequence dependent family setup times," International Journal of Production Economics, Elsevier, vol. 130(2), pages 246-254, April.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:134:y:2011:i:1:p:108-113. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.