IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v666y2025ics0378437125000846.html
   My bibliography  Save this article

Community detection in attributed networks using stochastic block models

Author

Listed:
  • Wang, Xiao
  • Dai, Fang
  • Guo, Wenyan
  • Wang, Junfeng

Abstract

Community detection is a significant focus in the field of complex network analysis. Most existing community detection methods for attributed networks primarily rely on network structure alone, while approaches that incorporate node attributes are typically designed for traditional community structures. These methods struggle to identify multipartite and mixed structures within the network. In addition, the model-based community detection methods proposed for attributed networks so far have not fully incorporated the distinctive topological information of nodes, such as betweenness centrality and clustering coefficient. In this paper, we propose a stochastic block model that incorporates betweenness centrality and clustering coefficient of nodes for attributed networks, referred to as BCSBM, along with an improved version called PBCSBM. Unlike other generative models for attributed networks, the BCSBM and PBCSBM models generate node links and attributes independently, with both processes following a Poisson distribution. Additionally, the connection probability between communities is determined based on the stochastic block model. Furthermore, the BCSBM model incorporates the betweenness centrality and clustering coefficient of nodes into the generation process for both links and attributes. The PBCSBM model is an improvement over the BCSBM model, taking into account the influence of node degree, betweenness centrality and clustering coefficient on the algorithm's accuracy. Finally, the parameters of the BCSBM and PBCSBM models are inferred using the Expectation-Maximization (EM) algorithm, and the node-community memberships in the network are determined through a hard clustering process. Compared with six algorithms on three attributed networks containing different network structures, the results show that the BCSBM and PBCSBM demonstrate strong data fitting capabilities and better performance.

Suggested Citation

  • Wang, Xiao & Dai, Fang & Guo, Wenyan & Wang, Junfeng, 2025. "Community detection in attributed networks using stochastic block models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 666(C).
  • Handle: RePEc:eee:phsmap:v:666:y:2025:i:c:s0378437125000846
    DOI: 10.1016/j.physa.2025.130432
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437125000846
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2025.130432?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jianwei Hu & Hong Qin & Ting Yan & Yunpeng Zhao, 2020. "Corrected Bayesian Information Criterion for Stochastic Block Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 1771-1783, December.
    2. Chen, Yi & Wang, Xiaolong & Bu, Junzhao & Tang, Buzhou & Xiang, Xin, 2016. "Network structure exploration in networks with node attributes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 240-253.
    3. Bothorel, Cecile & Cruz, Juan David & Magnani, Matteo & Micenková, Barbora, 2015. "Clustering attributed graphs: Models, measures and methods," Network Science, Cambridge University Press, vol. 3(3), pages 408-444, September.
    4. Liu, Wei & Chang, Zhenhai & Jia, Caiyan & Zheng, Yimei, 2022. "A generative node-attribute network model for detecting generalized structure and semantics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    5. Zhou, Mingqiang & Han, Qizhi & Li, Mengjiao & Li, Kunpeng & Qian, Zhiyuan, 2023. "Nearest neighbor walk network embedding for link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 620(C).
    6. Wang, Zi-Yi & Han, Jing-Ti & Zhao, Jun, 2017. "Identifying node spreading influence for tunable clustering coefficient networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 242-250.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Wei & Chang, Zhenhai & Jia, Caiyan & Zheng, Yimei, 2022. "A generative node-attribute network model for detecting generalized structure and semantics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    2. Ma, Jinlong & Kong, Lingkang & Li, Hui-Jia, 2023. "An effective edge-adding strategy for enhancing network traffic capacity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    3. Chang, Zhenhai & Yin, Xianjun & Jia, Caiyan & Wang, Xiaoyang, 2018. "Mixture models with entropy regularization for community detection in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 339-350.
    4. Benati, Stefano & Ponce, Diego & Puerto, Justo & Rodríguez-Chía, Antonio M., 2022. "A branch-and-price procedure for clustering data that are graph connected," European Journal of Operational Research, Elsevier, vol. 297(3), pages 817-830.
    5. Benati, Stefano & Puerto, Justo & Rodríguez-Chía, Antonio M., 2017. "Clustering data that are graph connected," European Journal of Operational Research, Elsevier, vol. 261(1), pages 43-53.
    6. Deng, Jiayi & Huang, Danyang & Ding, Yi & Zhu, Yingqiu & Jing, Bingyi & Zhang, Bo, 2024. "Subsampling spectral clustering for stochastic block models in large-scale networks," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
    7. Kooij, Robert E. & Sørensen, Nikolaj Horsevad & Bouffanais, Roland, 2021. "Tuning the clustering coefficient of generalized circulant networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    8. repec:plo:pone00:0178650 is not listed on IDEAS
    9. Huang, Xing & Qiu, Tian & Chen, Guang, 2024. "Effect of second-order network structure on link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 655(C).
    10. Fei Ye & Jingsong Xiao & Weidong Ma & Shiwen Jin & Ying Yang, 2025. "Detecting small clusters in the stochastic block model," Statistical Papers, Springer, vol. 66(2), pages 1-34, February.
    11. Zou, Renhao & Zhang, Shuguang & He, Zhipeng & Hao, Chenlu, 2024. "Co-jumps in the Chinese stock market before, during and after the COVID-19 pandemic: A network perspective," Finance Research Letters, Elsevier, vol. 70(C).
    12. Termeh Shafie & David Schoch, 2021. "Multiplexity analysis of networks using multigraph representations," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(5), pages 1425-1444, December.
    13. Ovielt Baltodano L'opez & Roberto Casarin, 2022. "A Dynamic Stochastic Block Model for Multi-Layer Networks," Papers 2209.09354, arXiv.org.
    14. Fengqin Tang & Chunning Wang & Jinxia Su & Yuanyuan Wang, 2020. "Spectral clustering-based community detection using graph distance and node attributes," Computational Statistics, Springer, vol. 35(1), pages 69-94, March.
    15. Mingyang Ren & Sanguo Zhang & Junhui Wang, 2023. "Consistent estimation of the number of communities via regularized network embedding," Biometrics, The International Biometric Society, vol. 79(3), pages 2404-2416, September.
    16. G. P. Clemente & A. Cornaro, 2023. "Community detection in attributed networks for global transfer market," Annals of Operations Research, Springer, vol. 325(1), pages 57-83, June.
    17. Wu, Qianyong & Hu, Jiang, 2024. "Two-sample test of stochastic block models," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    18. Dongming Chen & Mingzhao Xie & Yuxing He & Xin Zou & Dongqi Wang, 2024. "Representative Community Detection Algorithms for Attribute Networks," Mathematics, MDPI, vol. 12(24), pages 1-14, December.
    19. Vainora, J., 2024. "Latent Position-Based Modeling of Parameter Heterogeneity," Cambridge Working Papers in Economics 2455, Faculty of Economics, University of Cambridge.
    20. Su, Wenqing & Guo, Xiao & Chang, Xiangyu & Yang, Ying, 2024. "Spectral co-clustering in multi-layer directed networks," Computational Statistics & Data Analysis, Elsevier, vol. 198(C).
    21. D’Ambra, Pasqua & Vassilevski, Panayot S. & Cutillo, Luisa, 2023. "Extending bootstrap AMG for clustering of attributed graphs," Applied Mathematics and Computation, Elsevier, vol. 447(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:666:y:2025:i:c:s0378437125000846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.